
(SCI 30) - letture 23: Context-Free Grammas

Context free Grammer

Definition A context free grammar is a 4-tuple (V, Σ, R, S) , where:

-V is a set of Variables (also nonterminals)

- Σ is an alphabet, where Σ is a set of rules, of the form $\Delta \rightarrow \omega$, with $\Delta \in V$ String $\omega \in (\Sigma \cup V)^*$

- $\leq \in V$ is a Start Symbol

Definitions

Let $G = (V, \Sigma, R, S)$ be a CFG. Let $A \in V$, and $U, V, W \in (\Sigma \cup V)^*$, and suppose $A \ni W$ is a rule in R. We say that $U \otimes V \subset V$ con be derived in one stop from $U \wedge V$. We write this $U \wedge V = V \otimes V$.

Examples:

aaAb 🖒 aaaAb
aaAb 🔏 aabb

This generalizes to a notion of can be derived from (in any number of steps), which we write u > V.

 $A \stackrel{?}{\Rightarrow}^* aaA$ $13 \stackrel{?}{\Rightarrow}^* bbbbb$

Definitions The language of a grammar G, L(G), is the set of all strings in Σ^* that can be derived from S.

A language A is context-free if there exists a context-free grammar G such that L(G) = A.

banbba

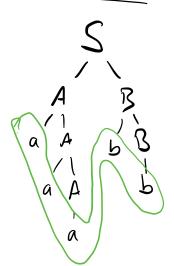
S = aSbs

S => b 5 a 5 b a 5 b 5 a 5 b a a 5 b 5 b 5 a 5 b a a b b a Ex. PHA

5 -> 68 as

Context free but not regular:

Notational aside:


Parse Trees

Grammar:

R 3 bB

Derivation:

Parse Tree:

Ex. PtB

Derive 1+1 * 4:

Pef: Agramment is ______ if some string w has more than one parse tree. Equivalently: Agrammanis _____ if there is more than one left-most derivation for some string.