- NFA DFA
- Regular Closur
- Regular Expressions

Definition: The \mathcal{E} -closure of a state s in Q, written $C_{\mathcal{E}}(s)$, is the set of states reachable from s after 0 or more \mathcal{E} -transitions.

Consider this NFA: NEQ, E, q, S, F)

$$C_{\varepsilon}(2) = \{2\}$$

$$C_{\varepsilon}(3) = \{3\}$$

Strategy for running a machine with E-transitions:

Constart in state
$$Q$$

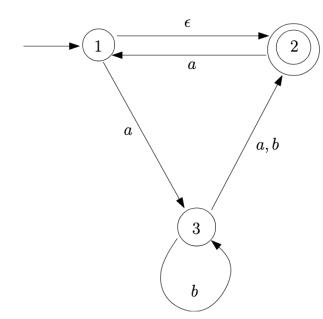
1. Make O or more ε -transitions

Let $q' = C_{\varepsilon}(q)$

Let
$$q' = C_{\varepsilon}(q)$$

one application of S'

$$\int_{-\infty}^{\infty} (R, \alpha) = \bigcup_{r \in R} C_{\varepsilon}(\delta(r, \alpha))$$



$$C_{\varepsilon}(1) = \{1, 2\}$$

$$C_{\varepsilon}(2) = \{2\}$$

$$C_{\varepsilon}(3) = \{3\}$$

Regular Closure (Finally!)

Prop: Regular languages are dosed under union.

Proof. Let LA and LB be regular languages over E.

There exist DFA'S MA and MB with $L(M_A) = L_A$ and $L(M_A) = L_B$.

Construct an NFA N as Pollows: (Sheetch)

Ex.: Construct an NFA for LALB (concatenation)
and LA* (star)

Regular Expressions: A meta-language for regular larguages.

Definition: A regular expression over alphabet E is defined inductively (recursively) as follows:

3	
Resular Expression	Language described
· E is a n.E.	{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
· Ø is a R.E.	\$
· a is a R.E forcllae E	{a}
· If R, R are R.E.s,	
-R, URz is a RE	R, URz
- R, Rz is a RE.	2,22
If Ris a R.E., R* is a R.E.	2*

 $L(12) = \{ w: w \text{ has } 1011 \text{ as a substring} \}$ $R = (001)^* 1011 (001)^*$

Regex Operator Precedence

- 1. Parens for grouping
- 2.*
- 3. Concatenation
- 4. Union
- OI*= O(1*)
- · OIUO = (01) U O
- · | U 0*= | U (0*)

Ex. Part C

$$ab = \{ab\}$$

$$a \cup b \cup \epsilon = \{a,b,\epsilon\}$$

$$\frac{ab \cup a}{b} = \{ab,ab\}$$

$$\frac{ab}{a} = \{a,b,ab\}$$

$$ab^* = \{a,b,ab\},abb,\dots$$