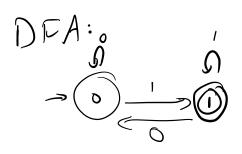
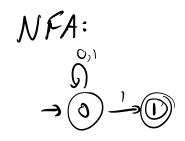
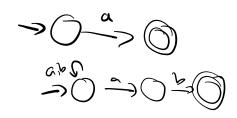
CSCI 301-Leutur 21: NFA = DFA







Ex.A: NFA Design warmup

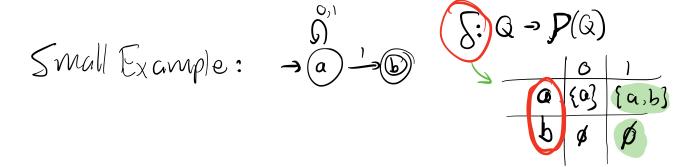
Plot twist/theorem:

Given an NFA N, there exists a DFA M Such that L(N) = L(M)

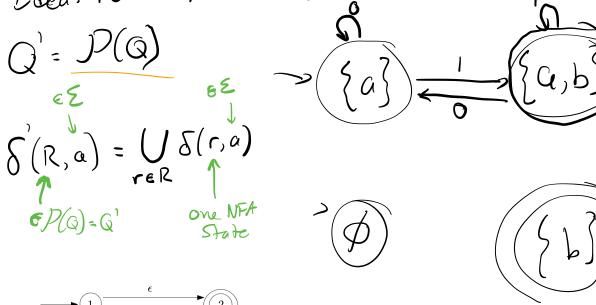
-> NFA's are no more powerful Than DFA's!

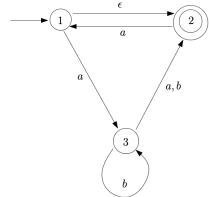
Proof: By construction.

Suppose $N = (Q, \Sigma, \delta, q, F)$ is an NFA. Construct a DFA $M = (G, \Sigma, \delta, q', F')$.



Idea: run all paths through the madrine in parallel.





Ex. B: NFA Conversion Warmup

What about E-transitions?

Definition: The \mathcal{E} -closure of a state s in Q, written $C_{\mathcal{E}}(s)$, is the set of states reachable from s after 0 or more \mathcal{E} -transitions.

Consider this NFA: NEQ, E, q, S, F)

State in Q:

$$C_{\varepsilon}(2) = \{2\}$$

$$C_{\varepsilon}(3) = \{3\}$$

Strategy for running a machine with E-transitions:

[0. Start m state Q1. Make Q or more E-transitions Let $Q' = C_E(Q)$

Let
$$q' = C_{\varepsilon}(q)$$

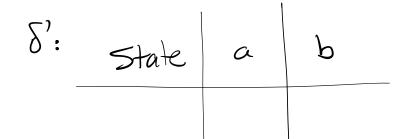
-2. Read a Symbol

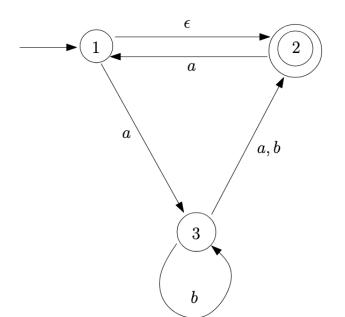
-2. Read a symbol

3. Make 0 or more E-transitions over application of S'

4. Read a Symbol

$$\int_{-\infty}^{\infty} (R, a) = \bigcup_{r \in R} C_{\epsilon}(\delta(r, a))$$





Ex. C: complete 5' table and determine F!

Regular Operations

- The **union** of two languages A and B is defined as $A \cup B = \{w : w \in A \text{ or } w \in B\}$.
- The **concatenation** or **product** of two languages A and B is defined as $AB = \{ww' : w \in A \text{ and } w' \in B\}.$
- The **closure** or **star** (or Kleene closure) of a language A is defined as: $A^*=\{u_1u_2\dots u_k:k\geq 0 \text{ and } u_i\in A \text{ for all } i=1,2,\dots,k\}$

