CSCI 301 - Lecture 16 : More functions $f(x) = x^2$

Definition: Suppose A, B are sets. A function from
A to B, written
$$F: A \rightarrow B$$
 is a relation ($F \leq A \times B$)
with the additional property that there is
exactly one element (a , b) $\in F$ for each $a \in A$.

Definitions: If
$$f:A \rightarrow B$$
 is a function,
• A is the domain of f (the set of possible inputs)
• B is the codoman of f (the set of ... things f might
 $map te$)
• $\{f(a) : a \in A\}$ is the range of f (the set of ... be B that
 f does map to)

Do Ex. A

Properties of Functions - Injective, Surjective, Bijective

Definitions: A function
$$f: A \rightarrow B$$
 is
- injective (one-to-one) if
for all $a, a' \in A, a \neq a' \Rightarrow f(a) \neq f(a')$.
(no two a's mapto the same b)
- surjective (onto) if
for all $b \in B$, there is some $a \in A$ where $f(a) = b$.
(all b's are mapped to)
- bijective if it is injective and surjective
(complete matching among a's and b's)

How to show a function $f: A \to B$ is injective: $a \neq a' \Rightarrow f(a) \neq f(a')$

Direct approach: Suppose $a, a' \in A$ and $a \neq a'$. :

Therefore $f(a) \neq f(a')$.

Contrapositive approach: Suppose $a, a' \in A$ and f(a) = f(a'). : Therefore a = a'.

How to show a function $f: A \to B$ is surjective: $\forall b \in B, \exists a \in A, f(a) = b$

Suppose $b \in B$. [Prove there exists $a \in A$ for which f(a) = b.]

Inverse Functions

Definition: A function F: A -> A is an identity Function if fla) = a Faralla.

<u>Definition</u>: Given a relation R, the inverse relation, written R', is defined as $\{(y,x): (x,y) \in R\}$

Fact: If f: A > B is a function, then its inverse f⁻¹ is a function f⁻¹: B > A if and only if f is bijectore

F • f = 1	$\mathcal{L}^{-1}(\mathcal{L}(x)) = X$	Do Ex.C
•		

Let
$$a, a' \in \mathbb{Z}$$
 and $a \neq a'$.
 $f(a) = 2a + 1$
 $f(a') = 2a' + 1$

Suppose
$$b \in \mathbb{Z}$$
.
Show $\exists a \in A, f(a) = b$
 $\implies 2arl = b.$
Case $1 : b$ is even.
 $\boxed{2c+l = b}$

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, f((m,n)) = 2n - 4m$$

Suppose
$$a, a' \in A$$

 (m, n) (m', n')
Show: $\exists a, a'$ with $a \neq a'$, $f(a) = f(a')$
 $m = 2$ $f((z, i)) = 2 \cdot 2 - 4 \cdot 1 = 0$
 $n' = 1$ $f((4, 2)) = 2 \cdot 2 - 4 \cdot 1 = 0$
 $n'' = 2$ $f((4, 2)) = 2 \cdot 2 - 4 \cdot 1 = 0$
 $n'' = 2$ $f((4, 2)) = 2 \cdot 2 - 4 \cdot 1 = 0$
 $n' = 2$ $f((4, 2)) = 2 \cdot 2 - 4 \cdot 1 = 0$
 $n' = 2$ $f(a) = 3$ even $\forall a, 5$
 $5a = if b = 5s = odd, #a, f(a) = b$

$$F((m,n)) = 3n - 4m$$

$$Tnjective? No. \exists a, a', a \neq a', f(a) = f(a')$$

$$Let a = (0,0) \quad F(a) = 0$$

$$a' = (3,4) \quad f(a') = 3.4 - 4.3 = 0$$

Surjective? Let
$$b = 3n - 4m$$

= $3(n-1) - 4(m-1) \in 3n - 3 - 4m + 4$
 $3n - 4m + 1$

