Use direct proof to prove each of the following statements.
Use direct proof to prove each of the following statments.
Definition: An integer \(n\) is even if \(n = 2a\) for some integer \(a \in \mathbb{Z}\).
Definition: An integer \(n\) is odd if \(n = 2a + 1\) for some integer \(a \in \mathbb{Z}\).
Definition: Suppose \(a\) and \(b\) are integers. We say that \(a\) divides \(b\), written \(a | b\), if \(b = ac\) for some \(c \in \mathbb{Z}\). In this case we also say that \(a\) is a divisor of \(b\), and that \(b\) is a multiple of \(a\).
Definition: Two integers have the same parity if they are both even or they are both odd. Otherwise they have opposite parity.