CSCI 301-Lecture 6: Logic 3

Logical Equivalence: Two statements are logically equivalent if their truth tables match exactly. We write this P = Q Example: P (=> Q is true when P and Q are both true or both false Q PGQ $(P \land Q) \lor (\neg P \land \neg G)$ P $(P \land Q) \lor (-P \land \neg Q)$ 1 Т T F F T F <u>.</u> 7 F F T P F T T

Example: does 1 distribute over V? $A \land (B \lor C) \stackrel{?}{=} (A \land B) \lor (A \land C)$

Do Ex.A

A	ß	С	$A \Lambda (B \vee C)$	$(A \land B) \lor (A \land C)$
T	T	T	T	T
7	Ŧ	\mathcal{F}	T	T
τ	F	Τ	${\mathcal T}$	\mathcal{T}
T	F	J	F	F
۴	7	Τ	F	F
F	7	7	F	F
F	F	τ	F	F
F	F	F	F	F

P=DQ

Negating Statements

P -> -P, done!

But there are some tricks.

Ex. #45 De Morgan's Laws: Negating
$$\Lambda$$
 and V
 $\neg (P \land Q) \equiv (\neg P \lor \neg Q)$
 $\neg (P \lor Q) \equiv (\neg P \land \neg Q)$

$$E_{x} # G: \text{ Negativy a conditional. } \neg (P \Rightarrow Q) = \frac{P \land \neg Q}{\neg (P \Rightarrow Q)} = \frac{P \land \neg Q}{\neg (P \Rightarrow Q)}$$

$$Q_{uantifiers}? = (\forall x, P(x)) = \exists x, \neg P(x) \\ \neg (\exists x, P(x)) = \forall x, \neg P(x)$$

2. Every even integer greater than 2 is the sum of two primes.

$$\forall x \in \mathbb{Z}, [E(x) \land x > 2] \Rightarrow [x = y + z \land y is prime \land z is prime]$$

 $P \Rightarrow Q$
 $\exists x \in \mathbb{Z}, E(x) \land x > 2 \land (x \neq y + z \lor y is not prime \lor z is not prime)$
 $\exists x \in \mathbb{Z}, E(x) \land x > 2 \land (x \neq y + z \lor y is not prime \lor z is not prime)$
 $\exists x \in \mathbb{Z}, E(x) \land x > 2 \land (x \neq y + z \lor y is not prime \lor z is not prime)$
 $\exists x \in \mathbb{Z}, E(x) \land x > 2 \land (x \neq y + z \lor y is not prime \lor z is not prime)$

Logical Inference

Knowing some things, what else can you conclude? (infer) (deduce)

Def	An integer n is	if n= 2a for some integer a.
Def		; f n = 2a + 1 for some integer a.

Def Suppose a and b are integers. We say that a b, written ____, if b = ac for some integer c. In this case, ue also say a is a _____ of b, and b is a _____ of a.

