
CSCI 301, Lab # 6

Fall 2024

Goal: This is the fourth in a series of labs that will build an interpreter for Scheme. In
this lab we will add the lambda special form.

Submission: This lab builds on Lab 5. You will extend the functionality your Lab 5
program and submit eval.rkt to Canvas. As usual, unit tests are provided. As in prior
labs, please make sure your file has a block comment at the top with your name, etc., and
each function has a comment describing its purpose, arguments, and return value.

Unit tests: Your program must pass the unit tests found in the file lab6-test.rkt. Place
this file in the same folder as your program, and run it; there should be no output.

Lambda creates a closure: If you consider a simple application of a lambda form, it is
a lot like let, that you did last week:

((lambda (x y) (+ x y)) (+ 2 2) (+ 3 3))

<=> (let ((x (+ 2 2)) (y (+ 3 3))) (+ x y))

In each case, a list of arguments, ((+ 2 2) (+ 3 3)) is evaluated giving the list of values
(4 6), then the list of variables, (x y), is bound to the list of values (4 6), and this is used
to extend the environment, and then the expression, (+ x y), is evaluated in the extended
environment, resulting in a value of 10 for the whole expression.

If this were the only use of lambda, then it would just be a different syntax for let.

However, the lambda is actually more powerful. A lambda can be created in one environment,
and applied in another. Consider the following code:

(let ((a 10) (f (let ((a 20)) (lambda (x) (+ a x)))))

(f 30))

1

The body of the function f is (+ a x). The function was called with argument 30, so x

should be bound to 30. But what is a? Is the answer 10 + 30 or 20 + 30?

You can check it out with Racket, but hopefully you can see that it should be 20+30. When
the lambda form was evaluated, a was bound to 20. When the resulting function, bound to
f, was applied, a was 10.

The solution to this is that a lambda form creates a special data structure called a closure.
The closure is what is bound to f, in the above example. A closure consists of three things:

1. A list of symbols (the variables to be bound when it is called).

2. An expression to be evaluated.

3. A stored environment, the environment in which the closure was created.

For example, in the lambda form: (lambda (x y) (+ x y)), the list of symbols is (x y)

and the expression is (+ x y). The third thing is the environment that was in effect when
the closure was created. In other words, when the lambda form was evaluated. A closure,
when created, stores this third thing, the current environment, along with the list of variables
and the body.

Because this is lisp, we will represent closures simply as lists containing the three items.
Since this is going to be a data type, let’s go ahead and define all the functions that will use
closures, a creator, a predicate, and three accessors:

Closure Data Type
(define closure (lambda (vars body env) (list ’closure vars body env)))

(define closure? (lambda (clos) (and (pair? clos) (eq? (car clos) ’closure))))

(define closure-vars cadr)

(define closure-body caddr)

(define closure-env cadddr)

Make sure in your code you only use these procedures to handle closures. Respect the
interface! (If you’re interested, you can look up Racket structures, which could have been
used instead of lists.) Note that since closures are just lists, we don’t need to write any
special printing procedures to look at them. They print nicely as lists already.

So, lambda is the new special form for this assignment. Evaluating a lambda form simply
creates a closure out of the arguments, the body, and the current environment. For example,
if the environment e1 is created like this:

(define e1 ’((x 5) (y 8) (z 10)))

then the following closures would look like this:

2

(evaluate ’(lambda (x) (+ x y)) e1)

=> (closure (x) (+ x y)

((x 5) (y 8) (z 10)))

(evaluate ’(lambda (a b c)

(cons a (list b c))) e1)

=> (closure (a b c) (cons a (list b c))

((x 5) (y 8) (z 10))

(evaluate ’(let ((x 10))

(lambda (foo) (+ foo foo)) e1)

=> (closure (foo) (+ foo foo) ((x 10)

(x 5) (y 8) (z 10)))

Note that the closure remembers the environment in which it was created, even if that
environment was a special environment, for example, like the one created by a let form.

Applying lambda to some arguments: Now that we know how to evaluate a lambda

form, we need to know how to apply a lambda form to some arguments. For example,
consider the form

((lambda (x y) (+ x y)) 10 20)

This is not a lambda form. It is not even a special form! It is the application of the lambda
form (lambda (x y) (+ x y)) to the arguments, (10 20). We will evaluate this just like
any other function application!

If we follow our rules for evaluating things that are not special forms, we would evaluate
each of the items in the list (the lambda form, the 10 and the 20), getting this list (printing
the closure as a list):
((lambda (x y) (+ x y)) 10 20)

⇓ ⇓ ⇓
((closure (x y) (+ x y) ((x 5) (y 8) (z 10) ...)) 10 20)

And now we have to apply the closure to the list of arguments. Up to now, we’ve only been
applying Racket built-in functions to their arguments, using the Racket apply function.
However, Racket doesn’t understand our closures. We have to figure out how to apply them
ourselves.

So, we will add a new apply-function procedure to our interpreter. When evaluating a nor-
mal (non-special-form) list, we evaluate each item in the list, and then call apply-function
with just two arguments: the car and the cdr of our evaluated list of items, the function
and its arguments.

apply-function will look at its first argument. If it is a procedure?, then it calls the

3

Racket built-in apply function. If it is a closure?, it calls apply-closure. Otherwise it
should throw an error, reporting an unknown function type.

apply-closure takes two arguments, a closure and a list of values. The closure has three
components: the variables, the body, and a saved environment. This procedure extends the
saved environment by appending the variables and their values to the front (just like let

did), and then evaluates the body of the closure in this new, extended environment.

Note that let is not the only form that introduces a local environment, now lambda does,
too. Consider the following code:

(let ((f (lambda (a) (lambda (b) (+ a b)))))

(let ((g (f 10))

(h (f 20)))

(list (g 100) (h 100))))

Here, the result of applying f to 10 creates a closure in an environment in which a is bound
to 10. When we apply f to 20, we create a closure in an environment in which a is bound
to 20. What should be the result of the call? Does your interpreter get that result?

Note also that we can’t define recursive functions directly using let. What would happen
if we tried this?

(let ((f

(lambda (n)

(if (= n 0)

1

(* n (f (- n 1)))))))

(f 5))

Try this in the Racket interpreter, and also in your interpreter. In our next lab, we will
define the letrec special form to remedy this.

4

