
CSCI 301 - Lab # 2

Spring 2025

Goal: You will implement a function that
produces the power set of the members of a
list. You will submit your program, named
lab2.rkt, to Canvas.

Guidelines: The Racket functionality
we’ve covered in class so far is sufficient to
complete this lab; if you find yourself reach-
ing for functions or syntax that we haven’t
covered, you are likely making things more
difficult. Traversal and manipulation of lists
should be done using recursion and car,
cdr, and cons. Do not use map; write out
the recursive function needed to get the job
done. You may use append (though you’ll
only need it in one place; see below). Do
not use any looping constructs (for, while,
etc.).

Unit tests: At a minimum, your program
must pass the unit tests found in the file
lab2-test.rkt. Place this file in the same
folder as your program, and run it; if all
tests, pass, there will be no output.

Finding subsets: Suppose we want to
procedurally find all the subsets of a given
set, A = {1, 2, 3}, the power set, P(A).

One way to think of this is to break the sub-
sets into two groups by picking a single el-
ement of A, for example, 1, and dividing

P(A) into subsets that have 1 in them, and
subsets that don’t.

Call the ones that don’t have 1 in them A0

and the ones that do, A1. In our example,
we have:

A0 = {∅, {2}, {3}, {2, 3}}
A1 = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}

Note that the sets in A1 are just the sets in
A0 with a 1 added to them.

The power set is just the union of these two:

P(A) = A0 ∪ A1

Note that we now have a recursive definition
of the power set:

P(A) =

{
{∅} if A = ∅
A0 ∪ A1 otherwise

where A0 are all the subsets of a set with-
out one of the elements of A, and A1 are
all the subsets with that element. But re-
member, A1 is just A0 with the one element
added back to each subset, so both sets are
defined in terms of A0.

Program: We’ll use the above ideas to
write a Scheme program to create sublists
of a list.

> (sublists ’())

’(())

> (sublists ’(1 2))

’(() (2) (1) (1 2))

1



> (sublists ’(1 2 3))

’(() (3) (2) (2 3) (1) (1 3) (1 2)

(1 2 3))

> (sublists ’(1 2 3 4))

’(() (4) (3) (3 4) (2) (2 4) (2 3)

(2 3 4) (1) (1 4) (1 3) (1 3 4)

(1 2) (1 2 4) (1 2 3) (1 2 3 4))

Given the above insights, we can write this
procedure. If the list is empty, the value is
simple. If the list ls is not empty, then find
the sublists of (cdr ls). Save this list in a
local variable to represent the set A0. Call
another procedure to add the (car ls) to
each of the lists in this set. Call this proce-
dure distribute. It works like this:

> (distribute 7 ’((1 2 3) (4 5)

(1 1 1)))

’((7 1 2 3) (7 4 5) (7 1 1 1))

Now just append the two lists to get the fi-
nal result.

Sorting the results: The results we get
are not very satisfying as regards their or-
der. Clearly, the second order here is bet-
ter than the first. Note that although I call
this new procedure subsets, it only sorts
the lists. It does not remove duplicates, etc.

> (sublists ’(1 2 3 4))

’(() (4) (3) (3 4) (2) (2 4) (2 3)

(2 3 4) (1) (1 4) (1 3) (1 3 4)

(1 2) (1 2 4) (1 2 3) (1 2 3 4))

> (subsets ’(1 2 3 4))

’(() (1) (2) (3) (4) (1 2) (1 3) (1 4)

(2 3) (2 4) (3 4) (1 2 3) (1 2 4)

(1 3 4) (2 3 4) (1 2 3 4))

We can get this simply by sorting the re-
sults from the sublists procedure. Scheme
has a builtin sorting function, which takes a
two-place boolean operator to decide how to
sort:

> (sort ’(3 5 2 9 1) <)

’(1 2 3 5 9)

> (sort ’(3 5 2 9 1) >)

’(9 5 3 2 1)

So all you have to do is write a two-
argument boolean operator that, first, sorts
by length of the list, and then, within lists of
the same length, sorts by elements. For ex-
ample, the function element-ordered? re-
turns #t if the lists are the same, or the first
differing element is smaller in the first list,
and #f otherwise:

> (element-ordered? ’(4 7 9) ’(4 7 9))

#t

> (element-ordered? ’(1 3 5) ’(1 3 4))

#f

> (element-ordered? ’(1 3 5 8)

’(1 3 6 7))

#t

And another function, length-ordered?,
which returns #t if the first list is shorter,
#f if the first list is longer, and the result
of element-ordered? if they are the same
length.

Putting these together gives such spectacu-
lar results as this:

> (subsets ’(1 2 3 4 5))

’(()

(1) (2) (3) (4) (5)

(1 2) (1 3) (1 4) (1 5) (2 3) (2 4)

(2 5) (3 4) (3 5) (4 5)

(1 2 3) (1 2 4) (1 2 5) (1 3 4)

(1 3 5) (1 4 5) (2 3 4) (2 3 5)

(2 4 5) (3 4 5)

(1 2 3 4) (1 2 3 5) (1 2 4 5)

(1 3 4 5) (2 3 4 5)

(1 2 3 4 5))

2


