
CSCI 301 - Lab # 1

Spring 2025

Goal: The purpose of this lab is write some simple code
in Scheme, and to get familiar with the hardware
and software that we will be using all quarter, the
lab room, and your TA.

You will submit your program, named lab1.rkt, to
Canvas.

Unit tests: At a minimum, your program must pass the
unit tests found in the file lab1-test.rkt. It will
report any error; there should be no output.

Program: Write a Scheme procedure called make-pi to
compute π using the (slowly converging) series:

π = 4− 4

3
+

4

5
− 4

7
+

4

9
− . . .

The procedure takes one parameter, which will be
the accuracy we need. We can stop whenever the
next factor we would add is smaller than this accu-
racy. For example:

(make-pi 0.1) => 3.09162380666784

(make-pi 0.001) => 3.1410926536210413

(make-pi 0.0000001) => 3.141592603589817

This series converges very slowly. If you are curious,
instrument the procedure so that it also prints the
number of iterations it took to get the accuracy.

Make sure that your program returns the value
of π computed, and doesn’t just print it.
For example, this should not give an error:
(+ (make-pi 0.1) (make-pi 0.1))

To accomplish this, define a recursive procedure
with (at least) three parameters that behave like
this (I’ve truncated the decimals):
Numerator Denominator Sum

4.0 1.0 0.0
-4.0 3.0 4.0
4.0 5.0 2.666
-4.0 7.0 3.466
4.0 9.0 2.895
-4.0 11.0 3.339
4.0 13.0 2.976
-4.0 15.0 3.283
4.0 17.0 3.017
-4.0 19.0 3.252
4.0 21.0 3.041

Make sure your program starts with floating point
numbers, e.g. 4.0, 1.0, etc. If you start with ex-
act integers, Scheme will try to keep exact rational
numbers through all of those computations and it
will be substantially slower. Also, your answers will
look like this:

(make-pi 0.1) =>

516197940314096/166966608033225

Some general tips about functional programming:
write lots of functions; no assignment statements;
no for or while loops; use cond in place of nested
chains of ifs. Remember that you can have Dr-
Racket auto-indent your code for you; please do this
to make sure you’re following conventional indenta-
tion practices.

For commenting, it’s a good idea to have a comment
block at the top as in the example shown below. For
each function you write, give a precise specification
for the function in a comment block that starts with
two semicolons (;;). Inline comments, as needed,
can be included within functions, preceded by a sin-
gle semicolon (;).

Name your program lab1.rkt and include a com-
ment block like the one shown with your own name
and W-number. Also, hopefully, with the correct
code, although this one will pass the unit tests!

lab1.rkt
#lang racket

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; CSCI 301, Spring 2025

;;

;; Lab #1

;;

;; Your Name Here

;; W012345678

;;

;; The purpose of this program is to

;; bla bla bla

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(provide make-pi)

;; return a number within tolerance of pi

(define make-pi

(lambda (tolerance) pi))

1


