
Lecture 34 - Notes  

Goals  

Know the definition, computation, and termination of a Turing machine.

Be able to design a Turing machine to accept a language.

Announcements  

A9 due Wednesday; Week 9 Survey due Wednesday night

A9 content covers material through today

Final exam covers material through Wednesday

Lab 8 - extended grace period

I am recruiting students for my research group. Please fill out this form and come talk to me with 
questions if you're interested.

A Brief Mention: The Pumping Lemma for Context-Free Languages  

There is an equivalent lemma that can be used to show that a language is not context-free. The intuition is 
similar, except instead of "looping" journies through a state machine, we observe that subtrees of the parse 
tree must be repeated. We won't cover this in much detail, but here's the lemma:

Lemma (The Pumping Lemma for Context-Free Languages): Let  be a context-free language. Then there 
exists an integer , called the pumping length, such that every string  in  with  can be written as 

, where

 (i.e.,  and  are not both empty)

, and

 for all .

This can be used to prove, for example, that  is not context-free.

Proof Sketch: Consider the string , and looks quite similar to the  regular proof, except that we 
have to address three cases for the location of . Since  and/or  could be empty, we consider three cases:

 doesn't have any ; that is, it's entirely in the  part.

In this case,  adds 's or 's but not 's.

 doesn't have any ; that is, it's entirely in the  part.

A symmetric argument can be made, pumping can add only 's or 's.

 cannot contain 's, 's, and 's,' because its length is less than or equal to 

Thus there's no way to break  into  that satisfies the CF pumping lemma criteria, so the language 
cannot be context-free.

 

https://forms.gle/kFSyS1PVMh8DNk9i8


The Turing Machine  

Having studied finite automata and pushdown automata, we now turn to our next more powerful machine, 
which turns out to be the most powerful one in the Chomsky Hierarchy. This is the famous Turing Machine, 
which turns out to be powerful enough to model any computer we know how to build (any classical computer, 
anyway - quantum computing is a different thing).

Informally, a Turing machine is similar to a PDA except that instead of a separate (read-only) input tape and 
mutable stack, we now have 1 or more tapes that can be read and/or written. Each tape head is now free to 
move left or right along each tape, and a computation step can involve overwriting the contents of a tape cell. 
Here's a sketch from the textbook:

Definition  

Formally, a deterministic -tape turing machine is a 7-tuple , where

1.  is an alphabet not containing the blank symbol 

2.  is a tape alphabet where  and 

3.  is a finite set of states

4.  is the start state

5.  is the accept

6.  is the reject state

7.  is the transition function, which is a function

 

Computation  

Input: the transition function  takes as input:



the current state 

the symbol currently at each of the  tape heads (let's call them 

Output: the output of the transition function is:

the new state 

the symbol to be written at each of the  tape heads 

a move instruction for each tape head , with , , and  representing 
"move left", "move right", and "don't move", respectively.

Initialization: The input string is stored on the first tape, with the first tape head on the leftmost symbol. The 
remainder of this and all other tapes is filled with the blank symbol . The machine is in state , the start state.

Termination:  The machine terminates immediately upon entering either the accept state  or the reject 
state .

Acceptance: The machine accepts a string if the computation terminates in the  state.

Rejection: The machine rejects a string (only) if the computation terminates in the  state.

Language of the Machine: The language  accepted by Turing machine  is the set of strings accepted 
by  per the definition above. This means that a string is not in  if the string is rejected or if the machine 
does not terminate.

Example:  

The language  turns out not to be context-free; we can use the context-free pumping lemma 
to show this. Let's design a one-tape Turing machine to accept strings in this language.

Idea: The plan is to "mark" off the first a, then the first b, then the first c; then go back to the beginning and do 
it again. If we finish and there are no a's, b's, or c's left, then there have to have been the same number of each.

While "marking" symbols, we will need to be quite careful about the ordering while marking them: we don't 
want to accept , or perhaps a more tricky case . To address this, we'll do the computation in two 
phases: first we'll check that the string looks like ; then we'll do the above marking process in a second 
phase.

Define the turing machine  as follows:

1. 

2. 

We will divide the states in  into two groups, one for each phase. In Phase 1, we're only checking that the 
string looks like :

 



In Phase 2, we're replacing an , then a , then a  with . Here are the states:

 

We also, of course, have accept and reject states  and . So in sum, 
.

Transition function:

We now need to encode the logic for the above states into the transition funciton. Each rule will have the form 
, where  are the input and output states,  are the symbols read and written by the tape 

head, and  is a move instruction.

Here it is - cheat sheet copied from the book because I didn't have time to put it in the tabular format I prefer 
for one-tape machines:

 

Informal Example: Palindromes in One Tape  

1. Start at the left end. 

2. Delete a character and rember what it was via state

3. Walk to the right end.

4. Make sure it matches the start character and delete it

5. Walk to the left end and start back at 1.


