CSCI 101 - Lecture 19: Relations, cont. Functions

Definition 11.2 Suppose R is a relation on a set A.

- 1. Relation *R* is **reflexive** if xRx for every $x \in A$. That is, *R* is reflexive if $\forall x \in A, xRx$.
- 2. Relation *R* is **symmetric** if xRy implies yRx for all $x, y \in A$. That is, *R* is symmetric if $\forall x, y \in A, xRy \Rightarrow yRx$.
- 3. Relation *R* is **transitive** if whenever xRy and yRz, then also xRz. That is, *R* is transitive if $\forall x, y, z \in A$, $((xRy) \land (yRz)) \Rightarrow xRz$.

Definition 11.3 A relation R on a set A is an <u>equivalence relation</u> if it is reflexive, symmetric and transitive.

Show that = (mod 3) is an equivalence relation.

✓. Roflexive:
$$a = a \pmod{3}$$
?

integer

integer

integer

integer

✓ • Symmetric: if a = b (mod 3), then b = a (mod 3) $3 \mid (a-b), so (a-b) = 3k \text{ for some} k \in \mathbb{Z}$

$$-(a-b)=-3K$$

 $b-a=3(-K)$

√ . Transtive: Suppose a = b (mol3) and b = c (mol3)

$$(a-b)+(b-c) = 3p+3q$$

 $a-c = 3(p+q)$
 $3(a-c)$

Definition 11.4 Suppose R is an equivalence relation on a set A. Given any element $a \in A$, the equivalence class containing a is the subset $\{x \in A : xRa\}$ of A consisting of all the elements of A that relate to a. This set is denoted as [a]. Thus the equivalence class containing a is the set $[a] = \{x \in A : xRa\}.$

Example

 $[a] = \{x \in A : x R a \}$ $A = \{-1, 1, 2, 3, 4\} R = \text{has the same sign as}^n$

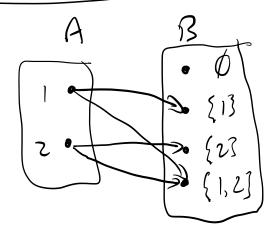
$$[-1] = \{-1\}$$

 $[-1] = \{1, 2, 3, 4\} = [4]$

Relation Between 2 sets: R & A x B

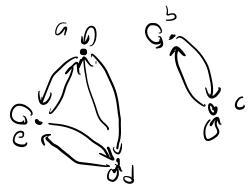
Example:
$$A = \{1, 2\}, B = P(A)$$

 $R = \{(1, \{1\}), (2, \{2\}), (1, \{1,2\}), (2, \{1,2\})\}$



 $A = \{a, 1, c, d, e\}$

E. A.4:



Functions (but more formally) F(x) = x2

Definition: Suppose A, B are sets. A function from A to B, unitten $C:A \rightarrow B$ is

a relation f = AxB with the property:

F has exactly one element (a, b) for all act.
Intuition: all elements of A map to some
Otennent of R.

Example: $f: \mathbb{Z} \rightarrow \mathbb{N}$ defined as $\{(n, \mathbb{N}+2): n \in \mathbb{Z}\}$