CSCI 301 - Lecture 18: Relations

os: Everything in math is a set, Part K

$$(a,b) \rightarrow (a,\{a,b\})$$

$$\{a,b\}$$

Definition 11.1 A **relation** on a set A is a <u>subset</u> $R \subseteq A \times A$. We often abbreviate the statement $(x, y) \in R$ as xRy. The statement $(x, y) \notin R$ is abbreviated as xRy.

Example
$$A = \{1, 2, 3\}$$

$$R = \{(1, 1), (2, 1), (2, 2), (3, 3), (3, 2), (3, 1)\}$$
Notice: $R \in A \times A$

$$R = \{1, 2, 3\}$$

$$\underline{A.1} \qquad \hat{X} = \left\{ (1,1), (2,2), (3,3) \right\}$$

A.3.
$$R = \{(1, 1), (1,3), (3,1), \dots \}$$

A.4.

Properties of Relations

If R 13 a relation on set A,

R is reflexive if x Rx for all x &A

Ris symmetric if x Ry => y Rx for all X, y & A

R is transitive if (x Ry and y Rz) => x Rz for all x, y, ZGA

$$R = \{(1,1),(2,1),(2,2),(2,3),(3,2),(3,1)\}$$

Reflexive? yes!

Symmetric? No!(z, 1) is ER, but (1,2) is not

Transitive? Yes!

B. 2.4 $R = \emptyset$ $\times Ry = yR \times \sqrt{symetric}$ B. 7. 1 {(a, L), (b, a), (a,c), (c,a), (a,a), (b,b), (c,c)} $\times \text{ not-transitive}$

Definition 11.2 Suppose R is a relation on a set A.

- 1. Relation *R* is **reflexive** if xRx for every $x \in A$. That is, *R* is reflexive if $\forall x \in A, xRx$.
- 2. Relation *R* is **symmetric** if xRy implies yRx for all $x, y \in A$. That is, *R* is symmetric if $\forall x, y \in A, xRy \Rightarrow yRx$.
- 3. Relation *R* is **transitive** if whenever xRy and yRz, then also xRz. That is, *R* is transitive if $\forall x, y, z \in A, ((xRy) \land (yRz)) \Rightarrow xRz$.

Definition 11.3 A relation R on a set A is an **equivalence relation** if it is reflexive, symmetric and transitive.

Definition 11.4 Suppose R is an equivalence relation on a set A. Given any element $a \in A$, the **equivalence class containing** a is the subset $\{x \in A : xRa\}$ of A consisting of all the elements of A that relate to a. This set is denoted as [a]. Thus the equivalence class containing a is the set $[a] = \{x \in A : xRa\}$.