(Ch 10, Ex #1) Prove that \(1 + 2 + 3 + 4 + \cdots + n = \frac{n^2 + n}{2}\) for every positive integer \(n\).
Prove the following proposition: \[ \forall n \in \mathbb{N}, \left( \sum_{i=0}^n 2^i \right) = 2^{n+1} - 1 \]
(Ch 10, Ex #11) Prove that \(3 \mid (n^2 + 5n + 6)\) for every integer \(n \ge 0\).