Lecture 15 - Exercises
Part A - Modular Congruence
- True or false:
- \(9 \equiv 1 \pmod{4}\)
- \(10 \equiv 20 \pmod{2}\)
- \(20 \equiv 4 \pmod{8}\)
- \(22 \equiv 8 \pmod{6}\)
- \(\forall x \in \mathbb{Z}, n \in
\mathbb{N}, x \equiv x \mod n\)
- \(\forall n \in \mathbb{N}, 3n \equiv 0
\pmod{n}\)
- Prove that if \(a\) and \(b\) have the same remainder when divided by
\(n\), then \(a \equiv b \pmod{n}\).
Part B - Proofs with Sets
- Prove that \(\{12n : n \in \mathbb{Z}\}
\subseteq \{2n: n \in \mathbb{Z}\} \cap \{3n: n \in
\mathbb{Z}\}\).
- Suppose \(A, B,\) and \(C\) are sets. Prove that if \(B \subseteq C\), then \(A \times B \subseteq A \times C\).
- Supoose \(A, B,\) and \(C\) are sets. Prove that \(A \cap (B \cup C) = (A \cap B) \cup (A \cap
C)\).
- Prove that if \(A\) and \(B\) are both sets with universal set \(U\), then \(\overline{A \cap B} = \overline{A} \cup
\overline{B}\).