(SCT 301 Lecture 10 - Direct Proof

Définition: An integer n is odd if n = 2a+1 for some integer a.

- Definition: Suppose a and bare integers. We say a divides 1, alb, if b = ac for some C & Z. a is a divisor of b, and b is a multiple of a.
- Definition: Two integers have the same parity if they are both even or both odd. Otherwise they have <u>opposite parity</u>
 - Proof: if P, then Q
 - P=>Q
 - Suppose ? ... Show Q

Example: If x is odd,
$$x^2$$
 is odd.
Proof: Suppose x is odd.
Then $x = 2arl$ For some $a \in \mathbb{Z}$.
 $X^2 = (2a+1)^2 = 4a^2 + 4a + 1$
 $2(2a^2+2a)+1$
 $x^2 = 2b+1$ for $b = 2a^2+2a$.
Therefore x^2 is odd.

Without loss of generality, suppose A is even and b is odd.