
CSCI 301, Lab # 5

Fall 2024

Goal: This is the third in a series of labs
that will build an interpreter for Scheme. In
this lab we will add the let special form.

Submission: This lab builds on Lab 4.
You will extend the functionality your Lab
4 program and submit eval.rkt to Canvas.
As usual, unit tests are provided. As in prior
labs, please make sure your file has a block
comment at the top with your name, etc.,
and each function has a comment describing
its purpose, arguments, and return value.

Unit tests: Your program must pass the
unit tests found in the file lab5-test.rkt.
Place this file in the same folder as your pro-
gram, and run it; there should be no output.

Let: The special form let has the follow-
ing syntax, with a typical example shown
at right. It consists of a list beginning with
the symbol let, then a list of symbol-value
lists, and finally a single expression. You
will expand your evaluate-special-form

function to handle this case, and also add
code to the special-form? boolean to rec-
ognize a let form. No other changes need
be made to your interpreter.

(let

((sym1 exp1)

(sym2 exp2)

... )

expr)

(let

((x (+ 2 2))

(y x)

(z (* 3 3)))

(+ a x y z))

To evaluate this form, in an environment e1,
we evaluate all the forms, exp1, exp2, . . . in
the environment e1. Note that this means
y will get the value x had in e1, not 4. Let’s
say that in e1 x had the value 10 and a had
the value 20.

We now have a list of variables, (x y z),
and a list of values, (4 10 9). We make a
new environment by adding these variables
and their values to the front of e1. No-
tice that adding to the front is key: the lo-
cal bindings will now be found before prior
definitions when searching the environment,
creating the behavior where a local variable
“shadows” one that is defined in an outer
scope.

The single expression at the end of a let

form is now evaluated in this new, extended
environment. Thus, the final value will be
(+ a x y z) => (+ 20 4 10 9) => 43.
Make sure you understand this example be-
fore proceeding.

It is also important to understand that this
new, extended environment, is only used
to evaluate the expr embedded in the let

1



form. After the let form is evaluated, you
go back to using the old environment. For
example:

(let ((x 10))

(+ (let ((x 20)) (+ x x)) x))

=> 50

In this example, we bind x to 10, then cre-
ate a local environment in which x is bound
to 20, in this new environment we evaluate
(+ x x) to get 40, and then, outside of the
new environment we evaluate x again, get-
ting 10, which is added to 40 to get 50.

A slightly trickier example is this:

(let ((x 10))

(+ (let ((x (+ x x))) (+ x x)) x))

What do you think this will evaluate to?
Enter it into the Racket interpreter to see
if you really understand. Your interpreter
should get the same result.

In your implementation, all this tricky scop-
ing will be handled by the fact that the
extended environment in the let form is
only used to evaluate the included expr. It
should not be visible outside of handling the
let form.

2


