CSCI 301, Lab # 4

Fall 2024

Goal: This is the second in a series of labs
that will build an interpreter for Scheme. In
this lab we process some special forms.

Submission: This lab builds on Lab 3.
You will extend the functionality your Lab
3 program and submit eval.rkt. As usual,
unit tests are provided. As in prior labs,
please make sure your file has a block com-
ment at the top with your name, etc., and
each function has a comment describing its
purpose, arguments, and return value.

Unit tests: At a minimum, your program
must pass the unit tests found in the file
lab4-test.rkt. Place this file in the same
folder as your program, and run it; there
should be no output.

Special forms: Special forms are sig-
nalled by certain keywords. Ultimately we
will process the special forms if, cond, let,
lambda, and letrec. For this lab, however,
we will only do the two conditionals, if and
cond.

You will add another case to your evaluate
function that will check for special forms.
So your evaluate function, adding in what
you did last week, will be able to handle
numbers, symbols, special forms, and lists
that are not special forms. (It will help if

you check for them in that order.)

For this week, a special form is a list where
the car of the list is one of the two symbols,
if or cond. Write a procedure to determine
if an expression is a special form. Examples:

> (special-form? ’(if 1 2 3))
#t

> (special-form? ’(cond 1 2 3))
#t

> (special-form? ’(+ 1 2 3))
#f

> (special-form? 99)

#f

> (special-form? ’if)

#f

Note that special-form? only checks to
see if its argument is a list, and if the car
of the list is if or cond. It doesn’t check
any more of the syntax of the form (but it
could).

If your evaluation function finds a special
form, it hands the whole form off to the
evaluate-special-form function, which
acts like this:

> (evaluate-special-form
"(if (=1 2) 3 4) e2)
4




The evaluate-special-form function
checks to see if the car of the list is ei-
ther if or cond (otherwise it should raise
an error), and then does the appropriate
thing.

If: The special form if is clearly not
a function, because functions evaluate all
their arguments. So, for instance, this:

> (Af (=11
(print "Hello")
(print "Goodbye"))
"Hello"

would print both Hello and Goodbye if if
had been defined as a function. Clearly, the
if special form evaluates only its first argu-
ment, and, on the basis of whether or not
that argument evaluates to #f (any value
other than #f acts as true), evaluates either
the second argument or the third, not both,
accordingly. The provided environment is
used to evaluate the subform. The one it
chooses to evaluate is the value of the spe-
cial form.

Cond: Once you've figured out how to do
if, you can tackle cond. Consider a typical
cond special form:

> (cond ((=12) 3)

((= 4 5) 6)
((=77) 8)
(else 9))

The cdr of this list is clearly a list of al-
ternatives. You will write a recursive pro-
cedure to go through this list, and evaluate
each of the tests in the items. For exam-
ple, the test in the item ’ ((= 4 5) 6) ‘ is

(= 4 5)|. As soon as a test evaluates to
#t, the other item in the list is evaluated,
and it is returned as the value of the special
form. Again, use the provided environment
to evaluate the selected forms.

But what about else? If we treat else as a
condition that always evaluates to true, the
else clause will behave as expected. We can
accomplish this by simply putting the sym-
bol else into the environment with value
#t.



