
CSCI 301, Lab # 3

Fall 2024

Goal: This lab begins a series of labs that
will build an interpreter for Scheme. In this
lab we get used to recursion as an evalua-
tion strategy, and programming it. Our pro-
grams will be represented by lists, to avoid
parsing problems until later.

Submission: You will submit your pro-
gram, named eval.rkt, to Canvas. Tests
are provided, but no skeleton file. As in
prior labs, please make sure your file has a
block comment at the top with your name,
etc., and each function has a comment de-
scribing its purpose, arguments, and return
value.

Unit tests: At a minimum, your program
must pass the unit tests found in the file
lab3-test.rkt. There should be no out-
put.

Evaluation: The process of evaluating
a Scheme expression that consists only
of function calls (procedure applications),
for example (+ 3 x (+ 2 2) (* 2 (+ 4

1))), is really very simple. The process fol-
lows three simple rules:

1. Numbers evaluate to themselves.

To check whether something is a num-
ber in scheme, use the number? pred-
icate.

2. Symbols, such as cons, +, and x, are
looked up in a table called the envi-
ronment. We will use a list for our
environment.

To check whether something is a sym-
bol in scheme, use the symbol? pred-
icate. Do you see a pattern here?

3. Lists are evaluated recursively. First,
each element of the list is evaluated,
and then the first argument, which
should be a procedure at this point,
is applied to the evaluated arguments:

(+ 3 x (+ 2 2) (* 2 (+ 4 1)))

⇓ ⇓ ⇓ ⇓ ⇓
(#<procedure:+> 3 5 4 10)

⇓
22

To implement this, you will write at least
two procedures: lookup and evaluate.

Lookup: The procedure lookup finds the
value of a variable in the environment. We
represent an environment as a list of lists.
Each sublist holds a variable, and the value
of that variable. For example:

(define env (list (list ’x 5)

(list ’+ +)

(list ’* *)))

This would be enough of an environment to
evaluate the above expression.

1

The lookup procedure takes two arguments:
a symbol and an environment, and

• If the first argument is not a symbol,
returns an error.

• If the symbol is not in the environ-
ment, returns an error.

• Otherwise, returns the value bound to
the variable.

lookup should be written as a simple re-
cursion through the environment, compar-
ing the provided symbol with the symbol in
the car (first element) of each variable-value
sublist. If it finds a matching symbol, the
cadr (the second element) is returned.

Evaluate: The evaluate procedure takes
two arguments, an expression to evaluate,

and an environment. It follows the above
rules:

• A number is returned unchanged.

• For a symbol the return value is looked
up in the environment.

• For a list, each element in the list is
evaluated recursively by the evaluate
procedure. You may want to use map,
but it is not required.

– If the first thing in the evaluated
list is not a procedure, an error is
returned. How do you think you
check for a procedure in Scheme?
Don’t overthink it.

– Otherwise, the procedure is ap-
plied to the evaluated arguments.

• If the expression is anything else, an
error is returned.

2

