
CSCI 301, Lab # 2

Fall 2024

Goal: The purpose of this lab is write
some code using lists. All procedures should
be written using car and cdr and recursion
to traverse lists. Do not use map; write out
the recursive function needed to get the job
done. You may use append (see below).

You will submit your program, named
lab2.rkt, to Canvas.

Unit tests: At a minimum, your program
must pass the unit tests found in the file
lab2-test.rkt. Place this file in the same
folder as your program, and run it; if all
tests, pass, there will be no output.

Finding subsets: Suppose we want to
procedurally find all the subsets of a given
set, A = {1, 2, 3}, the power set, P(A).

One way to think of this is to break the sub-
sets into two groups by picking a single el-
ement of A, for example, 1, and dividing
P(A) into subsets that have 1 in them, and
subsets that don’t.

Call the ones that don’t have 1 in them A0

and the ones that do, A1. In our example,
we have:

A0 = {∅, {2}, {3}, {2, 3}}
A1 = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}

Note that the sets in A1 are just the sets in
A0 with a 1 added to them.

The power set is just the union of these two:

P(A) = A0 ∪ A1

Note that we now have a recursive definition
of the power set:

P(A) =

{
{∅} if A = ∅
A0 ∪ A1 otherwise

where A0 are all the subsets of a set with-
out one of the elements of A, and A1 are
all the subsets with that element. But re-
member, A1 is just A0 with the one element
added back to each subset, so both sets are
defined in terms of A0.

Program: We’ll use the above ideas to
write a Scheme program to create sublists
of a list.

> (sublists ’())

’(())

> (sublists ’(1 2))

’(() (2) (1) (1 2))

> (sublists ’(1 2 3))

’(() (3) (2) (2 3) (1) (1 3) (1 2)

(1 2 3))

> (sublists ’(1 2 3 4))

’(() (4) (3) (3 4) (2) (2 4) (2 3)

(2 3 4) (1) (1 4) (1 3) (1 3 4)

(1 2) (1 2 4) (1 2 3) (1 2 3 4))

Given the above insights, we can write this
procedure. If the list is empty, the value is

1



simple. If the list ls is not empty, then find
the sublists of (cdr ls). Save this list in a
local variable to represent the set A0. Call
another procedure to add the (car ls) to
each of the lists in this set. Call this proce-
dure distribute. It works like this:

> (distribute 7 ’((1 2 3) (4 5)

(1 1 1)))

’((7 1 2 3) (7 4 5) (7 1 1 1))

Now just append the two lists to get the fi-
nal result.

Sorting the results: The results we get
are not very satisfying as regards their or-
der. Clearly, the second order here is bet-
ter than the first. Note that although I call
this new procedure subsets, it only sorts
the lists. It does not remove duplicates, etc.

> (sublists ’(1 2 3 4))

’(() (4) (3) (3 4) (2) (2 4) (2 3)

(2 3 4) (1) (1 4) (1 3) (1 3 4)

(1 2) (1 2 4) (1 2 3) (1 2 3 4))

> (subsets ’(1 2 3 4))

’(() (1) (2) (3) (4) (1 2) (1 3) (1 4)

(2 3) (2 4) (3 4) (1 2 3) (1 2 4)

(1 3 4) (2 3 4) (1 2 3 4))

We can get this simply by sorting the re-
sults from the sublists procedure. Scheme
has a builtin sorting function, which takes a
two-place boolean operator to decide how to
sort:

> (sort ’(3 5 2 9 1) <)

’(1 2 3 5 9)

> (sort ’(3 5 2 9 1) >)

’(9 5 3 2 1)

So all you have to do is write a two-
argument boolean operator that, first, sorts
by length of the list, and then, within lists of
the same length, sorts by elements. For ex-
ample, the function element-ordered? re-
turns #t if the lists are the same, or the first
differing element is smaller in the first list,
and #f otherwise:

> (element-ordered? ’(4 7 9) ’(4 7 9))

#t

> (element-ordered? ’(1 3 5) ’(1 3 4))

#f

> (element-ordered? ’(1 3 5 8)

’(1 3 6 7))

#t

And another function, length-ordered?,
which returns #t if the first list is shorter,
#f if the first list is longer, and the result
of element-ordered? if they are the same
length.

Putting these together gives such spectacu-
lar results as this:

> (subsets ’(1 2 3 4 5))

’(()

(1) (2) (3) (4) (5)

(1 2) (1 3) (1 4) (1 5) (2 3) (2 4)

(2 5) (3 4) (3 5) (4 5)

(1 2 3) (1 2 4) (1 2 5) (1 3 4)

(1 3 5) (1 4 5) (2 3 4) (2 3 5)

(2 4 5) (3 4 5)

(1 2 3 4) (1 2 3 5) (1 2 4 5)

(1 3 4 5) (2 3 4 5)

(1 2 3 4 5))

2


