CSCI 301, Lab $# 2$

Fall 2024

Goal: The purpose of this lab is write some code using lists. All procedures should be written using car and cdr and recursion to traverse lists. Do not use map; write out the recursive function needed to get the job done. You may use append (see below).

You will submit your program, named lab2.rkt, to Canvas.

Unit tests: At a minimum, your program must pass the unit tests found in the file lab2-test.rkt. Place this file in the same folder as your program, and run it; if all tests, pass, there will be no output.

Finding subsets: Suppose we want to procedurally find all the subsets of a given set, $A = \{1, 2, 3\}$, the power set, $\mathcal{P}(A)$.

One way to think of this is to break the subsets into two groups by picking a single element of A, for example, 1, and dividing $\mathcal{P}(A)$ into subsets that have 1 in them, and subsets that don't.

Call the ones that don't have 1 in them A_0 and the ones that do, A_1 . In our example, we have:

$$
A_0 = \{ \emptyset, \{2\}, \{3\}, \{2, 3\} \}
$$

$$
A_1 = \{ \{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\} \}
$$

Note that the sets in A_1 are just the sets in A_0 with a 1 added to them.

The power set is just the union of these two:

$$
\mathcal{P}(A) = A_0 \cup A_1
$$

Note that we now have a recursive definition of the power set:

$$
\mathcal{P}(A) = \begin{cases} \{ \emptyset \} & \text{if } A = \emptyset \\ A_0 \cup A_1 & \text{otherwise} \end{cases}
$$

where A_0 are all the subsets of a set without one of the elements of A , and A_1 are all the subsets with that element. But remember, A_1 is just A_0 with the one element added back to each subset, so both sets are defined in terms of A_0 .

Program: We'll use the above ideas to write a Scheme program to create sublists of a list.

Given the above insights, we can write this procedure. If the list is empty, the value is simple. If the list ls is not empty, then find the sublists of (cdr ls). Save this list in a local variable to represent the set A_0 . Call another procedure to add the (car ls) to each of the lists in this set. Call this procedure distribute. It works like this:

 $>$ (distribute 7 $'((1 2 3) (4 5))$ $(1\;1\;1))$ $'((7 1 2 3) (7 4 5) (7 1 1 1))$

Now just append the two lists to get the final result.

Sorting the results: The results we get are not very satisfying as regards their order. Clearly, the second order here is better than the first. Note that although I call this new procedure subsets, it only sorts the lists. It does not remove duplicates, etc.

```
> (sublists '(1 2 3 4))
'(() (4) (3) (3 4) (2) (2 4) (2 3)(2 3 4) (1) (1 4) (1 3) (1 3 4)
  (1 2) (1 2 4) (1 2 3) (1 2 3 4))
> (subsets '(1 2 3 4))
'(() (1) (2) (3) (4) (1 2) (1 3) (1 4)
  (2 3) (2 4) (3 4) (1 2 3) (1 2 4)
  (1 3 4) (2 3 4) (1 2 3 4))
```
We can get this simply by sorting the results from the sublists procedure. Scheme has a builtin sorting function, which takes a two-place boolean operator to decide how to sort:

> (sort '(3 5 2 9 1) <) $'$ (1 2 3 5 9) > (sort '(3 5 2 9 1) >) '(9 5 3 2 1)

So all you have to do is write a twoargument boolean operator that, first, sorts by length of the list, and then, within lists of the same length, sorts by elements. For example, the function element-ordered? returns #t if the lists are the same, or the first differing element is smaller in the first list, and #f otherwise:

```
> (element-ordered? '(4 7 9) '(4 7 9))
#t
> (element-ordered? '(1 3 5) '(1 3 4))
#f
> (element-ordered? '(1 3 5 8)
                    '(1 3 6 7))
#t
```
And another function, length-ordered?, which returns $\#t$ if the first list is shorter, #f if the first list is longer, and the result of element-ordered? if they are the same length.

Putting these together gives such spectacular results as this:

> (subsets '(1 2 3 4 5)) $'$ ($()$ (1) (2) (3) (4) (5) (1 2) (1 3) (1 4) (1 5) (2 3) (2 4) (2 5) (3 4) (3 5) (4 5) (1 2 3) (1 2 4) (1 2 5) (1 3 4) (1 3 5) (1 4 5) (2 3 4) (2 3 5) (2 4 5) (3 4 5) (1 2 3 4) (1 2 3 5) (1 2 4 5) (1 3 4 5) (2 3 4 5) (1 2 3 4 5))