For each of the following algorithms, give its worst-case and best-case asymptotic runtime class.
Let \(n\) =
side_length and give your answer in terms of \(n\).
/** Print a multiplication table listing the pairwise products 
  * of all integers in 0..side_length. */ 
public static void multTable(int side_length) {
  for (int i = 0; i < side_length; i++) {
    for (int j = 0; j < side_length; j++) {
     System.out.print(i*j);
      System.out.print(" ");
    }
    System.out.println();
  }
}Give your answer in terms of n.
/** Print n sets of nested parentheses. Example: nest(4) prints (((()))) 
  * Pre: n >= 0. */ 
public static void nest(int n) {
  for (int i = 0; i < n; i++) {
    System.out.print("(");
  }
  for (int i = 0; i < n; i++) {
    System.out.print(")");
  }
  System.out.println();
}Let \(n\) =
A.length and give your answer in terms of \(n\).
/** Print the first min(10, A.length) elements of A. */ 
public static void firstTen(int[] A) {
  int i = 0;
  while (i < 10 && i < A.length) {
    System.out.print(A[i]);
    i += 1;
  }
}Give your answer in terms of n.
/** Return the number of times n is evenly divisible by 7  */ 
public static void sevens(int n) {
  int k = n;
  int count = 0;
  while (k > 1 && k % 7 == 0) {
    k /= 7;
    count++;
  }
  return count;
}Let \(n\) = height
and give your answer in terms of \(n\).
/** Print an ASCII art picture of a width-6 ladder with the given number of rungs.
  * For example, printLadder(4) prints:
  * |----|
  * |----|
  * |----|
  * |----|
  */ 
public static void printLadder(int height) {
  for (int i = 0; i < height; i++) {
    System.out.print("|");
    for (int j = 0; j < 4; j++) {
      System.out.print("-");
    }
    System.out.println("|");
  }
}Assume that this method has access to the
linearSearch method we’ve discussed. Let \(m\) = A.length and give your
answer in terms of n and \(m\).
/** Return the number of integers in 0..n that appear in A. */
public static int numFirstN(int[] A, int n) {
  int count = 0;
  for (int i = 0; i < n; i++) {
    if (linearSearch(A, i) >= 0) {
      count++;
    }
  }
  return count;
}Let \(n\) =
side_length and give your answer in terms of \(n\).
 /** Print a lower-triangular multiplication table listing the products i*j
    * for all pairs i <= j in 0..side_length. */ 
  public static void multTable(int side_length) {
    for (int i = 0; i < side_length; i++) {
      for (int j = 0; j < side_length; j++) {
        if (i <= j) {
          System.out.print(i*j);
          System.out.print(" ");
        }
      }
      System.out.println();
    }
  }Give your answer in terms of n.
public static void nonsense(int n) {
  int i = n/2;
  int j = i;
  while (i > 0) {
    i /= 2;
  }
  while (j > 0) {
     j -= 2;
  }
}