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Dijkstra's Algorithm: 
Proof of Correctness



Goals
Understand a proof that Dijkstra's algorithm 
correctly computes the shortest paths.



Dijkstra's Algorithm
At this point, we know how to execute it. 

But does it actually work? 

Why is this OK?

S = { }; F = {v};  v.d = 0;
while  (F ≠ {})  {
    f = node in F with min d value;
         Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
      }
   }
}

To safely move f to S, we 
need to know for sure we've 
found the shortest path to f.



Proof of Correctness
Dijkstra’s algorithm is greedy: it makes a 
sequence of locally optimal moves, which 
results in the globally optimal solution. 

Specifically: It is not obvious that there 
cannot still be a shorter path to the Frontier 
node with smallest d-value.

In general, this strategy doesn't work!
To credibly claim it works here, we need to prove it.



Proof Sketch
1. State a loop invariant. 

2. Prove that if that invariant is maintained, 
then the algorithm is correct. 

3. Prove that the algorithm maintains the 
invariant.



1. For a Settled node s, a shortest path from v to s contains only 
settled nodes and s.d is length of shortest v - s path. 

2. For a Frontier node f, at least one v -> f path contains only 
settled nodes (except perhaps for f) and f.d is the length of the 
shortest such path 

3. All edges leaving S go to F (i.e., no edges from S to Unexplored)
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The while loop in Dijkstra’s algorithm maintains 
the following 3-part invariant:

1. State invariant. 
2. If invariant maintained, 

then alg is correct. 
3. Invariant is maintained



Proof of Correctness: Theorem

Theorem: For a node f in the 
Frontier with minimum d value (over 
all nodes in the Frontier), f.d is the 
shortest-path distance from v to f.  
Proof: Show that any other path from 
v to if has length >= f.d

S = { }; F = {v};  v.d = 0;
while  (F ≠ {})  {
    f = node in F with min d value;
         Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
      }
   }
}

Case 1: if v is in F, then S is empty and v.d = 0, which is trivially the 
shortest distance from v to v.
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Case 2: v is in S. Part 2 of the invariant says: 
• f.d is the length of the shortest path from v to f containing all settled 

nodes except f, and f.d is the length of such a path.
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Case 2: v is in S. Part 2 of the invariant says: 
• f.d is the length of the shortest path from v to f containing all settled 

nodes except f, and f.d is the length of such a path. 
Any other v-f path must either be longer or go through another frontier 
node g before arriving at f:
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Theorem: For a node f in the 
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but: f.d <= g.d,  
so the path through g can't be shorter!



Proof of Correctness:  
Invariant Maintenance

1. For a Settled node s, a shortest path 
from v to s contains only settled nodes 
and s.d is length of shortest v -> s path. 

2. For a Frontier node f, at least one v -> f 
path contains only settled nodes 
(except perhaps for f) and f.d is the 
length of the shortest such path 

3. All edges leaving S go to F (or: no 
edges from S to Unexplored)
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S = { }; F = {v};  v.d = 0;
while  (F ≠ {})  {
    f = node in F with min d value;
         Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
      }
   }
}

At initialization:  
1. S is empty; trivially true. 
2. v.d = 0, which is the shortest path. 
3. S is empty, so no edges leave it.

s

Proof of Correctness:  
Invariant Maintenance

1. State invariant. 
2. If invariant maintained,  

then alg is correct. 
3. Invariant is maintained

1. For a Settled node s, a shortest path 
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and s.d is length of shortest v -> s path. 
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path contains only settled nodes 
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S = { }; F = {v};  v.d = 0;
while  (F ≠ {})  {
    f = node in F with min d value;
         Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
      }
   }
}

At each iteration: 
1. Theorem says f.d is the shortest distance to f: safe to move to S 
2. Updating w.d maintains Part 2 of the invariant. 
3. Each neighbor is either already in F or gets moved there.

Proof of Correctness:  
Invariant Maintenance

1. State invariant. 
2. If invariant maintained,  

then alg is correct. 
3. Invariant is maintained

1. For a Settled node s, a shortest path 
from v to s contains only settled nodes 
and s.d is length of shortest v -> s path. 

2. For a Frontier node f, at least one v -> f 
path contains only settled nodes 
(except perhaps for f) and f.d is the 
length of the shortest such path 

3. All edges leaving S go to F (or: no 
edges from S to Unexplored)



We're done!
What just happened?

1. State a loop invariant. 

2. Prove that if that invariant is maintained, 
then the algorithm is correct. 

3. Prove that the algorithm maintains the 
invariant.

the min d-valued node in F can be moved to S

the invariant is true at the start and after each iteration


