
CSCI 241
Scott Wehrwein

Dijkstra's Algorithm:
Proof of Correctness

Goals
Understand a proof that Dijkstra's algorithm
correctly computes the shortest paths.

Dijkstra's Algorithm
At this point, we know how to execute it.

But does it actually work?

Why is this OK?

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

To safely move f to S, we
need to know for sure we've
found the shortest path to f.

Proof of Correctness
Dijkstra’s algorithm is greedy: it makes a
sequence of locally optimal moves, which
results in the globally optimal solution.

Specifically: It is not obvious that there
cannot still be a shorter path to the Frontier
node with smallest d-value.

In general, this strategy doesn't work!
To credibly claim it works here, we need to prove it.

Proof Sketch
1. State a loop invariant.

2. Prove that if that invariant is maintained,
then the algorithm is correct.

3. Prove that the algorithm maintains the
invariant.

1. For a Settled node s, a shortest path from v to s contains only
settled nodes and s.d is length of shortest v - s path.

2. For a Frontier node f, at least one v -> f path contains only
settled nodes (except perhaps for f) and f.d is the length of the
shortest such path

3. All edges leaving S go to F (i.e., no edges from S to Unexplored)

Proof of Correctness: Invariant
Settled

S
Frontier

F
Unexplored

f

v s

v f

The while loop in Dijkstra’s algorithm maintains 
the following 3-part invariant:

1. State invariant.
2. If invariant maintained, 

then alg is correct.
3. Invariant is maintained

Proof of Correctness: Theorem

Theorem: For a node f in the
Frontier with minimum d value (over
all nodes in the Frontier), f.d is the
shortest-path distance from v to f.  
Proof: Show that any other path from
v to if has length >= f.d

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 1: if v is in F, then S is empty and v.d = 0, which is trivially the
shortest distance from v to v.

v

1. State invariant.
2. If invariant maintained,  

then alg is correct.
3. Invariant is maintained

Proof of Correctness: Theorem
S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 2: v is in S. Part 2 of the invariant says:
• f.d is the length of the shortest path from v to f containing all settled

nodes except f, and f.d is the length of such a path.

v

1. State invariant.
2. If invariant maintained,  

then alg is correct.
3. Invariant is maintained

Theorem: For a node f in the
Frontier with minimum d value (over
all nodes in the Frontier), f.d is the
shortest-path distance from v to f.  
Proof: Show that any other path from
v to if has length >= f.d

v f

Proof of Correctness: Theorem
S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 2: v is in S. Part 2 of the invariant says:
• f.d is the length of the shortest path from v to f containing all settled

nodes except f, and f.d is the length of such a path.
Any other v-f path must either be longer or go through another frontier
node g before arriving at f:

1. State invariant.
2. If invariant maintained,  

then alg is correct.
3. Invariant is maintained

Theorem: For a node f in the
Frontier with minimum d value (over
all nodes in the Frontier), f.d is the
shortest-path distance from v to f.  
Proof: Show that any other path from
v to if has length >= f.d

v f

g

Proof of Correctness: Theorem
S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 2: v is in S. Part 2 of the invariant says:
• f.d is the length of the shortest path from v to f containing all settled

nodes except f, and f.d is the length of such a path.
Any other v-f path must either be longer or go through another frontier
node g before arriving at f:

1. State invariant.
2. If invariant maintained,  

then alg is correct.
3. Invariant is maintained

Theorem: For a node f in the
Frontier with minimum d value (over
all nodes in the Frontier), f.d is the
shortest-path distance from v to f. 
Proof: Show that any other path from
v to if has length >= f.d

v f

g
but: f.d <= g.d,
so the path through g can't be shorter!

Proof of Correctness:  
Invariant Maintenance

1. For a Settled node s, a shortest path
from v to s contains only settled nodes
and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f
path contains only settled nodes
(except perhaps for f) and f.d is the
length of the shortest such path

3. All edges leaving S go to F (or: no
edges from S to Unexplored)

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

1. State invariant.
2. If invariant maintained,  

then alg is correct.
3. Invariant is maintained

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

At initialization:
1. S is empty; trivially true.
2. v.d = 0, which is the shortest path.
3. S is empty, so no edges leave it.

s

Proof of Correctness:  
Invariant Maintenance

1. State invariant.
2. If invariant maintained,  

then alg is correct.
3. Invariant is maintained

1. For a Settled node s, a shortest path
from v to s contains only settled nodes
and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f
path contains only settled nodes
(except perhaps for f) and f.d is the
length of the shortest such path

3. All edges leaving S go to F (or: no
edges from S to Unexplored)

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

At each iteration:
1. Theorem says f.d is the shortest distance to f: safe to move to S
2. Updating w.d maintains Part 2 of the invariant.
3. Each neighbor is either already in F or gets moved there.

Proof of Correctness:  
Invariant Maintenance

1. State invariant.
2. If invariant maintained,  

then alg is correct.
3. Invariant is maintained

1. For a Settled node s, a shortest path
from v to s contains only settled nodes
and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f
path contains only settled nodes
(except perhaps for f) and f.d is the
length of the shortest such path

3. All edges leaving S go to F (or: no
edges from S to Unexplored)

We're done!
What just happened?

1. State a loop invariant.

2. Prove that if that invariant is maintained,
then the algorithm is correct. 

3. Prove that the algorithm maintains the
invariant.

the min d-valued node in F can be moved to S

the invariant is true at the start and after each iteration

