CSCl 247

Scott Wehrwein

Dijkstra's Algorithm:

Proof of Correctness

Goals

Understand a proof that Dijkstra's algorithm
correctly computes the shortest paths.

Dijkstra's Algorithm
At this point, we know how to execute it.

. S=1{h F={v}; vd=0;
But does it actually work? while (F= (1) {
f = node 1n F with min d value;

: : — Remove f from F, add it to S;
? _))
Why is this OK? for each neighbor w of f {

if (WwnotinSorF) {

To safely move fto S, we w.d = f.d+ weight(f, w);
! add w to F;
need to know for sure we've 1 else if (F.dsweight(f.w) < wd)
found the shortest path to 1. w.d = f.d+weight(f,w);
J
}

¥

Proot of Correctness

Dijkstra’s algorithm is greedy: it makes a
sequence of locally optimal moves, which
results in the globally optimal solution.

In general, this strategy doesn't work!

To credibly claim it works here, we need to prove it.

Specitically: It is not obvious that there
cannot still be a shorter path to the Frontier
node with smallest d-value.

Proot Sketch

1. State a loop invariant.

2. Prove that if that invariant is maintained,
then the algorithm is correct.

3. Prove that the algorithm maintains the
Invariant.

Proof of Correctness: Invariant

Settled Frontier Unexplored 1. State invariant.
S F 2. If invariant maintained,

then alg is correct.
3. Invariant is maintained

The while loop in Dijkstra’s algorithm maintains
the following 3-part invariant:

1. For a Settled node s, a shortest path from v to s contains only
settled nodes and s.d is length of shorteal - s path.

2. For a Frontier node f, at least one v -> f path contains only
settled nodes (except perhaps for f) and f.d is the length of the
shortest such path

3. All edgesleaving S go to F (i.e., no edges from S to Unexplored)

Proof of Correctness: Theorem

S = -F={v}: vd=0: 1. State invariant.
. s s ’ 2. If invariant maintained,
while (F=#{}) { then alg is correct.
f = node 1n F with min d value; 3. Invariantis maintained

Remove f from F, add it to S;
for each neighbor w of 1 {
if (Wnotin SorF) {
w.d = f.d + weight(t, w);

Theorem: For a node fin the
Frontier with minimum d value (over
all nodes in the Frontier), f.d is the

add w to F: shortest-path distance from v to 1.
} else if (f.d+weight(f,w) < w.d) { Proof: Show that any other path from
w.d = f.d+weight(f,w); v to if has length >= t.d

; Case 1:if visin F, then Sis empty and v.d = 0, which is trivially the
! shortest distance from v to v.

O

Proot of Correctness: Theorem

1. State invariant.

S = { }; F = {V}; vd = O; 2. If invariant maintained,
while (F #{}) { then alg is correct.
f = node imn F with min d Value; 3. Invariantis maintained
Remove T from F, add 1t to 5; Theorem: For a node f in the

for each neighbor w of 1 {
if (Wnotin SorF) {

Frontier with minimum d value (over

wd = f£d+ weight(f, w): all nodes in the Frontier), f.d is the
acid W tc.) B S shortest-path distance from v to 1.

} else if (f.d+weight(f,w) < w.d) { Proof: Show that any other path from

w.d = f.d+weight(f,w); v to if has length >=1{.d
} Case 2:visin S. Part 2 of the invariant says:
} o f.disthe length of the shortest path from v to f containing all settled

1 nodes except f, and f.d is the length of such a path.

Proot of Correctness: Theorem

S = -F={v}: vd=0: 1. State invariant.
. s s ’ 2. If invariant maintained,
while (F=#{}) { then alg is correct.
f = node 1n F with min d value; 3. Invariantis maintained

Remove f from F, add it to S;
for each neighbor w of 1 {
if (Wnotin SorF) {
w.d = f.d + weight(t, w);

Theorem: For a node fin the
Frontier with minimum d value (over
all nodes in the Frontier), f.d is the

add w to F: shortest-path distance from v to 1.
} else if (f.d+weight(f,w) < w.d) { Proof: Show that any other path from
w.d = f.d+weight(f,w); v to if has length >= t.d

} Case 2:visinS. Part 2 of the invariant says:
} o f.disthe length of the shortest path from v to f containing all settled
1 nodes except f, and f.d is the length of such a path.
Any other v-f path must either be longer or go through another frontier
node g before arriving at f:

Proot of Correctness: Theorem

1. State invariant.

S = { }; F = {V}; vd = O; 2.. If invariant maintained,
while (F #{}) { then alg is correct.
f = node imn F with min d Value; 3. Invariantis maintained
Remove T from F, add 1t to 5; Theorem: For a node fin the

for each neighbor w of 1 {

) . Frontier with minimum d value (over
if (wnotin S orF) { (

w.d = f.d+ weight(f, w): all nodes in the Frontier), f.d is the
acid W t(.) = T shortest-path distance from v to f.

} else if (f.d+weight(f,w) < w.d) { Proof: Show that any other path from

w.d = f.d+weight(f,w); v to if has length >= f.d
} Case 2:visin S. Part 2 of the invariant says:
} o f.disthe length of the shortest path from v to f containing all settled
1 nodes except f, and f.d is the length of such a path.

Any other v-f path must either be longer or go through another frontier
node g before arriving at f:
but: f.d <= g.d,
so the path through g can't be shorter!

Proof of Correctness: 1. Stete invarant

. If invariant maintained,
then alg is correct.

| nva ri a nt M a i nte n a n Ce 3. Invariant is maintained

S={ s F={v}; vd=0;
while (Fz {}) {

h

f = node 1in F with min d value;

Remove f from F, add it to S;
for each neighbor w of 1 {
if (wnotin SorF) {

h

w.d = f.d + weight(t, w);
add w to F;

1.

2.

3.

} else if (f.d+weight(f,w) < w.d) {

¥

w.d = f.d+weight(f,w);

For a Settled node s, a shortest path
from v to s contains only settled nodes
and s.d is length of shortest v -> s path.

For a Frontier node f, at least one v -> f
path contains only settled nodes
(except perhaps for f) and f.d is the
length of the shortest such path

All edges leaving S go to F (or: no
edges from S to Unexplored)

Proof of Correctness: 1. Stete invarant

. If invariant maintained,
then alg is correct.

| nva ri a nt M a i nte n a n Ce 3. Invariant is maintained

1. For a Settled node s, a shortest path
S={} F={v}; vd=0; from v to s contains only settled nodes
while (F#{}) { and s.d is length of shortest v -> s path.
f = node 1in F with min d value;
Remove f from F, add it to S;
for each neighbor w of 1 {
if (wnotin SorF) {
w.d = f.d + weight(t, w);
add w to F; 3. All edgesleaving S goto F(or: no
} else if (f.d+weight(f,w) <w.d) { edgesfrom S to Unexplored)
w.d = f.d+weight(f,w);

2. Fora Frontier node f, at least one v -> f
path contains only settled nodes
(except perhaps for f) and f.d is the
length of the shortest such path

At initialization:
\ 1. Sis empty; trivially true.

} O %9 2. v.d =0, which is the shortest path.
3. Sisempty, so no edges leave it.

Proof of Correctness: 1. St invarant

. If invariant maintained,
then alg is correct.

| nva ri a nt M a i nte n a n Ce 3. Invariant is maintained

1. For a Settled node s, a shortest path
S={};F={v}; v.d=0; from v to s contains only settled nodes
while (F#{}) { and s.d is length of shortest v -> s path.
f = node 1in F with min d value;
Remove f from F, add it to S;
for each neighbor w of 1 {
if (wnotin SorF) {
w.d = f.d + weight(t, w);
add w to F; 3. All edgesleaving S goto F(or: no
} else if (f.d+weight(f,w) <w.d) { edgesfrom S to Unexplored)
w.d = f.d+weight(f,w);
} At each iteration:
I 1. Theorem says f.d is the shortest distance to f: safe to move to S

; 2. Updating w.d maintains Part 2 of the invariant.

2. For a Frontier node f, atleast one v -> f
path contains only settled nodes
(except perhaps for f) and f.d is the
length of the shortest such path

3. Each neighbor is either already in F or gets moved there.

We're done!
What just happened?

1. State a loop invariant.

2. Prove that if that invariant is maintained,
then the algorithm is correct.

the min d-valued node in F can be moved to S

3. Prove that the algorithm maintains the

invariant. o
the invariant is true at the start and after each iteration

