
CSCI 241
Scott Wehrwein

Huffman Codes: 
Building Optimal Coding Trees



Goals
Understand the intuition behind Huffman 
Coding Trees


Be able to execute on paper and implement 
construction of Huffman Coding Trees.



Tree Construction: Intuition
Suppose we want to 
encode the following 
strings:

aaaaaaa

aaaabbb

fffffff


Different trees are good for different inputs. 
Idea:

• Build a tree that's optimal for your input.

• Store the tree plus the encoded string.

0000000

0000101101101

1100110011001100110011001100



Tree Construction: Intuition
Suppose we want to 
encode the following 
strings:

aaaaaaa

aaaabbb

fffffff


Different trees are good for different inputs. Different trees are good for different inputs. 
What makes a tree good for a given input? Key idea:

• Characters that appear more often  

should live closer to the root.

0000000

0000101101101

1100110011001100110011001100



Tree Construction: Intuition

What are those numbers I hid? 

Frequencies!

Characters that appear more often  
should live closer to the root.

a appears 45 times 
in the input string

f appears 5 times 
in the input string

characters in this 
subtree appear 55 
times in the input 
string

Goal: build a tree with the 
most-frequent symbols as 
close to the root as possible.



Tree Construction: Algorithm

1. Count the frequency of each character in the input.

2. Create a forest of single-node trees, one for each 

character.

3. Build the tree bottom-up by repeatedly connecting 

the two lowest-frequency trees.


Overview:



Tree Construction: Algorithm

Example:

1. Count the frequency of each character in the input.




Tree Construction: Algorithm

Example:

1. Count the frequency of each character in the input.

2. Create a forest of single-node trees, one for each 

character.



Tree Construction: Algorithm
3. Greedily connect the two lowest-frequency trees.


A. Remove the two trees with smallest root frequencies 
from the forest.


B. Join them with a parent whose frequency is the sum of 
the child frequencies.


C. Put the newly created tree back into the forest.



Tree Construction: Algorithm
3. Greedily connect the two lowest-frequency trees.


A. Remove the two trees with smallest root frequencies 
from the forest.


B. Join them with a parent whose frequency is the sum of 
the child frequencies.


C. Put the newly created tree back into the forest.



Tree Construction: Algorithm
3. Greedily connect the two lowest-frequency trees.


A. Remove the two trees with smallest root frequencies 
from the forest.


B. Join them with a parent whose frequency is the sum of 
the child frequencies.


C. Put the newly created tree back into the forest.



Tree Construction: Algorithm
3. Greedily connect the two lowest-frequency trees.


A. Remove the two trees with smallest root frequencies 
from the forest.


B. Join them with a parent whose frequency is the sum of 
the child frequencies.


C. Put the newly created tree back into the forest.



Tree Construction: Algorithm
3. Greedily connect the two lowest-frequency trees.


A. Remove the two trees with smallest root frequencies 
from the forest.


B. Join them with a parent whose frequency is the sum of 
the child frequencies.


C. Put the newly created tree back into the forest.



Tree Construction: Algorithm
3. Greedily connect the two lowest-frequency trees.


A. Remove the two trees with smallest root frequencies 
from the forest.


B. Join them with a parent whose frequency is the sum of 
the child frequencies.


C. Put the newly created tree back into the forest.



Tree Construction: Algorithm
3. Greedily connect the two lowest-frequency trees.


A. Remove the two trees with smallest root frequencies 
from the forest.


B. Join them with a parent whose frequency is the sum of 
the child frequencies.


C. Put the newly created tree back into the forest.



Tree Construction: Algorithm
3. Greedily connect the two lowest-frequency trees.


A. Remove the two trees with smallest root frequencies 
from the forest.


B. Join them with a parent whose frequency is the sum of 
the child frequencies.


C. Put the newly created tree back into the forest.



Tree Construction: Algorithm
3. Greedily connect the two lowest-frequency trees.


A. Remove the two trees with smallest root frequencies 
from the forest.


B. Join them with a parent whose frequency is the sum of 
the child frequencies.


C. Put the newly created tree back into the forest.



Tree Construction: Algorithm
3. Greedily connect the two lowest-frequency trees.


A. Remove the two trees with smallest root frequencies 
from the forest.


B. Join them with a parent whose frequency is the sum of 
the child frequencies.


C. Put the newly created tree back into the forest.



Tree Construction: Algorithm
3. Greedily connect the two lowest-frequency trees.


A. Remove the two trees with smallest root frequencies 
from the forest.


B. Join them with a parent whose frequency is the sum of 
the child frequencies.


C. Put the newly created tree back into the forest.



Tree Construction: Algorithm
3. Greedily connect the two lowest-frequency trees.


A. Remove the two trees with smallest root frequencies 
from the forest.


B. Join them with a parent whose frequency is the sum of 
the child frequencies.


C. Put the newly created tree back into the forest.



Tree Construction: Algorithm
3. Greedily connect the two lowest-frequency trees.


A. Remove the two trees with smallest root frequencies 
from the forest.


B. Join them with a parent whose frequency is the sum of 
the child frequencies.


C. Put the newly created tree back into the forest.


