Trie Time Complexity

e Let N be the number of keys in the trie
o letl be the length of a key

|
Let's analyze contains... Independent of N!

contains(Tkey): Constant time!
O(].) if T is null:
return false (for Set) or null (for Map)

o(1) if key is empty string:
return T.terminates (for Set) or T.value (for Map)

return contains(T.children.get(key[0]),rest(key))
O(L,..) or 0(1) O(L,,,) or O(1)

key

With proper optimization, each instance is O(1). How many times does it run in the worst case? O(Lkey).

Trie Time Complexity, Summary

With a max key length, worst case time complexities:

Contains Insert Delete
BST O(N) O(N) O(N)
AVL O(logN) O(logN) O(logN)

Trie o(1) o(1) o(1)

Time Complexity, a Fraud Revealed?

So why ever use an AVL tree over a trie?

If B is the size of the alphabet, and L is the max length of a

key, there are B- unique keys.
o A maximum size before the tree is full!

Asymptotic runtime complexity studies behavior as N — co.

For an arbitrary N, we need L=0(log;N)
o Now O(logN), not O(1) recursive calls

Aside: a similar result is true for Radix Sort:
o Runtimeis O(NL)
o Don't want each key to appear on average 00 times?
then it's really O(NlogN)

Now that you know the truth...

We'll pretend we don't. r A\
Trie operations? O(1) \@
Radix sort? O(N)) 2

Tries and radix sort can be good
options when the keys are convenient
and naturally bounded.

They are not magic bullets.

Asymptotic analysis doesn't tell the
full story.

