Trie Time Complexity

- Let N be the number of keys in the trie
- Let L_{key} be the length of a key

Let's analyze contains...

```
contains(T, key):
    if T is null:
        return false (for Set) or null (for Map)
    if key is empty string:
        return T.terminates (for Set) or T.value (for Map)
    return contains(T.children.get(key[0]), rest(key))
```

With proper optimization, each instance is $O(1)$. How many times does it run in the worst case? $O(L_{\text{key}})$. Independent of N! Constant time!
Trie Time Complexity, Summary

With a max key length, worst case time complexities:

<table>
<thead>
<tr>
<th></th>
<th>Contains</th>
<th>Insert</th>
<th>Delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>BST</td>
<td>O(N)</td>
<td>O(N)</td>
<td>O(N)</td>
</tr>
<tr>
<td>AVL</td>
<td>O(logN)</td>
<td>O(logN)</td>
<td>O(logN)</td>
</tr>
<tr>
<td>Trie</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
</tbody>
</table>
Time Complexity, a Fraud Revealed?

So why ever use an AVL tree over a trie?

- If B is the size of the alphabet, and L is the max length of a key, there are B^L unique keys.
 - A maximum size before the tree is full!

- Asymptotic runtime complexity studies behavior as $N \to \infty$.

- For an arbitrary N, we need $L=O(\log_B N)$
 - Now $O(\log N)$, not $O(1)$ recursive calls

- Aside: a similar result is true for Radix Sort:
 - Runtime is $O(NL)$
 - Don’t want each key to appear on average ∞ times? then it’s really $O(N \log N)$

Now that you know the truth...

We’ll pretend we don’t.

Trie operations? $O(1)$

Radix sort? $O(N)$

Tries and radix sort can be good options when the keys are convenient and naturally bounded.

They are not magic bullets.

Asymptotic analysis doesn’t tell the full story.