
Tries (aka Digital Trees)

CSCI 241
Brian Hutchinson

Trie Overview

● From the word retrieval
○ Pronounced tree or try

● Alternative to BSTs for implementing the Set ADT and Map ADT

● Tree data structure that uses position rather than comparisons

● Assumes keys are a sequence of symbols/characters/digits from some alphabet
○ E.g., keys are W-numbers, alphabet = {0,1,2,...,9,W}
○ E.g., keys are English words without punctuation, alphabet = {a,b,...z,A,B,...Z}

● Request: ponder parallels to the comparison sort vs radix sort trade-offs here

BST vs Tries for Set ADT

Binary Search Tree Trie

● Two tree data structures storing the same seven keys.
● Keys are sequences of lower case English characters.

Example TrieNode Definition

class TrieNode<S,V> {
HashMap<S,TrieNode> children; // S is symbol type; e.g., Character
boolean terminates; // for implementing Set ADT (checkmark)
V value; // for implementing Map ADT

}

Example for this node:
● this.terminates == false
● this.value == null
● children maps

○ ‘a’ to
○ ‘i’ to
○ ‘y’ to

