CSCl 247

Scott Wehrwein

Dijkstra's Algorithm:
Efficient Implementation



Goals

Be prepared to implement Dijkstra's
algorithm efticiently.






Implementing Dijkstra
Efficiently (A4)

S={};F={v}; v.d=0; v.bp = null; 1. Store Frontier in a min-heap priority
while (,F £ {1) % | o " queue with d-values as priorities.

f = node 1n F with min d value;
Remove f from F, add it to S;
for each neighbor w of 1 {

if (Wwnotin SorF) {

2. To efticiently iterate over neighbors,
use an adjacency list graph
representation.

w.d = f.d + weight(t, w); 3. To store w.d and w.bp, we will use a
w.bp =T1; HashMap<Node,PathData>
add w to F;

) else if (f.d+weight(f,w) < w.d) { 4. We don't need to explicitly store
w.d = f.d+weight(f,w); Settled or Unexplored sets:
wbp =f anodeisinSorFiffitisin

} the map.



Implementing Dijkstra
Efficiently (A4)

S={}:F={v}: v.d=0: vbp = null: 1. Store Frontier in a min-heap priority
while (,F £ {1) % | o " queue with d-values as priorities.

f = node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of 1 {

if (Wwnotin SorF) {

2. To efticiently iterate over neighbors,
use an adjacency list graph
representation.

w.d = f.d + weight(t, w); 3. To store w.d and w.bp, we will use a
w.bp =T1; HashMap<Node,PathData>
add w to F;

) else if (f.d+weight(f,w) < w.d) { 4. We don't need to explicitly store
w.d = f.d+weight(f,w); Settled or Unexplored sets:
wbp =f anodeisinSorFiffitisin

} the map.



Implementing Dijkstra
Efficiently (A4)

S={};F={v}; v.d=0; v.bp = null;1' Store Frontier in a min-heap priority

while (F#{}) { queue with d-values as priorities.
f =node in F with min.d value; 2. To efficiently iterate over neighbors,
Remove f from F, add it to S; use an adjacency list graph
for each neighbor w of f { representation.
if (Wwnotin SorF) {
w.d = f.d + weight(t, w); 3. To store w.d and w.bp, we will use a
w.bp =T1; HashMap<Node,PathData>
add w to F;
} else if (f.d+weight(f,w) < w.d) { 4. We don't need to explicitly store
w.d = f.d+weight(f,w): Settled or Unexplored sets:
w.bp = f anodeisinSorFiffitisin
1 the map.



Implementing Dijkstra
Efficiently (A4)

S={YF={v}; v.d=0; v.bp= null'1' Store Frontier in a min-heap priority
while (,F £ {1) % | o " queue with d-values as priorities.

f = node 1n F with min d value;

Remove f from F, add it to S;

for each neighbor w of f {
if (Wwnotin SorF) {

2. To efticiently iterate over neighbors,
use an adjacency list graph
representation.

w.d = f.d + weight(f, w); 3. To store w.d and w.bp, we will use a
w.bp =f; HashMap<Node,PathData>
add w to F;
) else if (f.d+weight(f,w) < w.d) { 4. We don't need to explicitly store
w.d = f.d+weight(f,w); Settled or Unexplored sets:
w.bp =f1 anodeisinSorFiffitisin
} the map.



Implementing Dijkstra
Efficiently (A4)

S={YF={v}; v.d=0; v.bp= null'1' Store Frontier in a min-heap priority
while (,F £ {1) % | o " queue with d-values as priorities.

f =node i I with min d value; 2. To efficiently iterate over neighbors,
Remove f from F, add it to S;

for each neighbor w of f {
if (wWnotinSor F) {

use an adjacency list graph
representation.

w.d = f.d + weight(t, w); 3. To store w.d and w.bp, we will use a
w.bp =T1; HashMap<Node,PathData>
add w to F;

} else if (f.d+weight(f,w) < w.d) { 4 We don't need to explicitly store
w.d = f.d+weight(f,w); Settled or Unexplored sets:
wbp =1 anodeisinSorFiffitisin

} the map.



Implementing Dijkstra
Efficiently (A4)

S={);F={v}:; v.d=0;: vbp=null; 4 We don't need to explicitly

while (F #{}) {
f = node 1n F with min d value;

Remove f from F, add it to S;

store Settled or Unexplored sets:
wisin S or F < itisin the map.

for each neighbor w of 1
if (wnotin S or F)‘%
w.d = f.d + weight(t, w);
w.bp =T1;
add w to F;
} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);
wbp =1
J
h
h

The only time we need to check
membership in S is here.

If wisnotinSorF
it must be in Unexplored.

therefore,
we haven’t found a path to it.

therefore,
it has no d or bp yet.

theretfore,
itisn’t in the map!




