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Dijkstra's Algorithm:
Efficient Implementation



Goals

Be prepared to implement Dijkstra's
algorithm efticiently.






Implementing Dijkstra
Efficiently (A4)

S={};F={v}; v.d=0; v.bp = null; 1. Store Frontier in a min-heap priority
while (,F £ {1) % | o " queue with d-values as priorities.

f = node 1n F with min d value;
Remove f from F, add it to S;
for each neighbor w of 1 {

if (Wwnotin SorF) {

2. To efticiently iterate over neighbors,
use an adjacency list graph
representation.

w.d = f.d + weight(t, w); 3. To store w.d and w.bp, we will use a
w.bp =T1; HashMap<Node,PathData>
add w to F;

) else if (f.d+weight(f,w) < w.d) { 4. We don't need to explicitly store
w.d = f.d+weight(f,w); Settled or Unexplored sets:
wbp =f anodeisinSorFiffitisin

} the map.
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while (F #{}) {
f = node 1n F with min d value;

Remove f from F, add it to S;
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wisin S or F < itisin the map.

for each neighbor w of 1
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w.d = f.d + weight(t, w);
w.bp =T1;
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} else if (f.d+weight(f,w) < w.d) {
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The only time we need to check
membership in S is here.

If wisnotinSorF
it must be in Unexplored.

therefore,
we haven’t found a path to it.

therefore,
it has no d or bp yet.

theretfore,
itisn’t in the map!




