CSCl 247

Scott Wehrwein

Single Source Shortest Paths:

Weig
Dijkstra's A

nted Grap

gorithm -

NS

ntuition

Goals

Know what a weighted graph is.

Understand the intuition and high-level
pseudocode for Dijkstra’s single-source
shortest paths algorithm.

Be able to execute Dijkstra's algorithm on
paper.

Weighted Graphs

Like a normal graph, but edges have weights.

Formally: a graph (V,E) with an accompanying weight function

w:E — R
* may be directed or undirected. é/(C

:

Informally: label edges with their weights 4 3

Representation: @ °

e adjacency list - store weight of (u,v) with v the node in u’s list

e adjacency matrix - store weight in matrix entry for (u,v)

Paths in Weighted Graphs

The length (or weight) of a path in a
weighted graph is the sum of the edge
weights along that path.

—xample: the path (1, 6, 4) has weight 7.

Computing Shortest Paths in
Unweighted Graphs
e Perform a breadth-first search (that's it!)

e BFS visits nodes in order of “"hop distance”,
or path length!

e BFS(1):

D

Computing Shortest Paths in
Unweighted Graphs

e Perform a breadth-first search (that's it!)

e BFS visits nodes in order of “"hop distance”,
or path length!

e BFS(1): U

1 2

D

Computing Shortest Paths in
Unweighted Graphs
e Perform a breadth-first search (that's it!)

e BFS visits nodes in order of “"hop distance”,
or path length!

e BFS(1): U 1

1 2

Computing Shortest Paths in
Unweighted Graphs
e Perform a breadth-first search (that's it!)

e BFS visits nodes in order of “"hop distance”,
or path length!

e BFS(1):

Computing Shortest Paths in
Unweighted Graphs
e Perform a breadth-first search (that's it!)

e BFS visits nodes in order of “"hop distance”,
or path length!

e BFS(1):

Computing Shortest Paths in
Weighted Graphs

BFS doesn’'t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1)

Computing Shortest Paths in
Weighted Graphs

BFS doesn’'t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1)

Computing Shortest Paths in
Weighted Graphs

BFS doesn’'t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1) 2

Computing Shortest Paths in
Weighted Graphs

BFS doesn’'t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1) 2

Computing Shortest Paths in
Weighted Graphs

BFS doesn’'t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1) 2

Dijkstra’s Shortest Paths:
Subpaths

Fact: subpaths of shortest paths are shortest paths

Example: if the shortest path from u to w goes

through v, then:

e the part of that path from u to v is the shortest
path from u to v.

it there were some better path u..v, that would
also be part of a better way to get from u to w.

Dijkstra’s Shortest Paths:
Subpaths

Fact: subpaths of shortest paths are shortest paths

Consequence: a candidate shortest path from start
node s to some node Vv's neighbor w is the shortest
path from to v + the edge weight from v to w.

Shorthand:

e v.d isthe shortest (known) distance from the startto v
e wt(v, w) is the weight of the edge from vtow

v.d L — wt(v,w) —

S i

Dijkstra’s Shortest Paths: Intuition

Intuition: explore nodes like BFS, but in order of path
length instead of number of hops.

There are three kinds of nodes:
e Settled - nodes for which we know the actual shortest path.

e Frontier - nodes that have been visited but we don't
necessarily have their actual shortest path

e Unexplored - all other nodes.

Each node n keeps track of n.d, the length of the shortest
known known path from start.

We may discover a shorter path to a frontier node than the
one we've found already - if so, update n.d.

Dijkstra’s Shortest Paths: Cartoon

settled frontier unexplored

Before:

During:

After:

Dijkstra’s Shortest Paths: Cartoon

settled frontier unexplored

Before: Q

During:

After:

Dijkstra’s Shortest Paths: Cartoon

settled frontier unexplored

Before: Q

During:

After:

Dijkstra’s Shortest Paths: Cartoon

settled frontier unexplored

Before: Q

During:

S

unreackablenodes

Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:
set 1ts path length
add 1t to frontier
else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:
For each neighbor w of f:
1f we’ve never seen w before:
add 1t to frontier q, fwﬁ
else 1f the path to w via f 1s shorter:

move the node f with smallest d from F to S
set 1ts path length
update w’'s shortest path length

Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:
For each neighbor w of f:
1f we’ve never seen w before:
add it to frontier q, fwﬁ
else 1f the path to w via f 1s shorter:

move the node f with smallest d from F to S
set 1ts path length
update w’'s shortest path length

Wd— u.d + wt(u,w)

settled 4’6\
o o6

Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:
move the node f with smallest d from F to S
1f we’'ve never seen w before:
set 1ts path length
else 1f the path to w via f 1s shorter:
update w’'s shortest path length

For each neighbor w of f:
add it to frontier q, fwﬁ
settled o

WdH—ethtéu—wé

Q f.d + wt(f,w)

Dijkstra’s Shortest Paths:
Boct Execution

Initialize Settled to empty
. Initialize Frontier to the start node
distances: while the frontier isn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
i1f we’ve never seen w before:
set i1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via £ i1s shorter:
update w’s shortest path length

known

Settled set:

Frontier set:
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier 1isn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
i1f we’'ve never seen w before:
set i1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via f is shorter:
update w’s shortest path length

Settled set: {}

Frontier set: {4}
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’'t empty:
move the node f with smallest d from F to S
For each neighbor w of f: £: 4
1f we’'ve never seen w before: .
set i1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via £ i1s shorter:
update w’s shortest path length

Settled set: {4}

Frontier set: {}
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier 1isn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f: £
1f we’ve never seen w before: w: 0
set i1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via f is shorter:
update w’s shortest path length

4

Settled set: {4}

Frontier set: {0}
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’'t empty:
move the node f with smallest d from F to S
For each neighbor w of f: £: 0
1f we’'ve never seen w before: .
set i1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via £ i1s shorter:
update w’s shortest path length

Settled set: {4, O}

Frontier set: {}
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’'t empty:
move the node f with smallest d from F to S
For each neighbor w of f: m
1f we’ve never seen w before:
set i1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ i1s shorter:
update w’s shortest path length

Settled set: {4, O}

Frontier set: {1}
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’'t empty:
move the node f with smallest d from F to S
For each neighbor w of f: m
1f we’ve never seen w before:
set i1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ i1s shorter:
update w’s shortest path length

Settled set: {4, O}

Frontier set: {1, 2}
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’'t empty:
move the node f with smallest d from F to S
For each neighbor w of f: £: 1
1f we’'ve never seen w before: .
set i1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via £ i1s shorter:
update w’s shortest path length

Settled set: {4, 0, 1}

Frontier set: {2}
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’'t empty:
move the node f with smallest d from F to S
For each neighbor w of f: m
1f we’ve never seen w before:
set i1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ i1s shorter:
update w’s shortest path length

Settled set: {4, 0, 1}

Frontier set: {2, 3}
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’'t empty:
move the node f with smallest d from F to S
For each neighbor w of f: £: 2
1f we’'ve never seen w before: .
set i1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via £ i1s shorter:
update w’s shortest path length

Settled set: {4, 0, 1, 2}

Frontier set: {3}
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier 1isn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f: £
1f we’ve never seen w before: w: 3
set i1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via f is shorter:
update w’'s shortest path length

2

Settled set: {4, 0, 1, 2}

Frontier set: {3}
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier 1isn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f: £
i1f we’'ve never seen w before: w: 3
set i1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via f is shorter:
update w’'s shortest path length

2

Settled set: {4, 0, 1, 2}

?
2.d + wt(2,3) < 3.d

Frontier set: {3}
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier 1isn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f: £
i1f we’'ve never seen w before: w: 3
set i1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via f is shorter:
update w’'s shortest path length

2

Settled set: {4, 0, 1, 2}

2.d + wt(2,3)
Frontier set: {3} 6 + 1

A AN

shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier 1isn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f: £
i1f we’'ve never seen w before: w: 3
set i1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via f is shorter:
update w’'s shortest path length

2

2
Settled set: {4, 0, 1, 2} 47
?
2.d + wt(2,3) < 3.d
Frontier set: {3} 6 + 1 <8
7 < 8

shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier 1isn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f: £
i1f we’'ve never seen w before: w: 3
set i1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via f is shorter:
update w’'s shortest path length

2

2
Settled set: {4, 0, 1, 2} 47
?
2.d + wt(2,3) < 3.d
Frontier set: {3} 6 + 1 <8
7 < 8

shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’'t empty:
move the node f with smallest d from F to S
For each neighbor w of f: £: 3
1f we’'ve never seen w before: .
set i1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via £ i1s shorter:
update w’s shortest path length

Settled set: {4, 0, 1, 2, 3}

Frontier set: {} Empty => done!
shortest-paths(4)

