
CSCI 241
Scott Wehrwein

Single Source Shortest Paths:
Weighted Graphs

Dijkstra's Algorithm - Intuition

Goals
Know what a weighted graph is.

Understand the intuition and high-level
pseudocode for Dijkstra’s single-source
shortest paths algorithm.

Be able to execute Dijkstra's algorithm on
paper.

Weighted Graphs
Like a normal graph, but edges have weights.

Formally: a graph (V,E) with an accompanying weight function

• may be directed or undirected.

Informally: label edges with their weights

Representation:

• adjacency list - store weight of (u,v) with v the node in u’s list

• adjacency matrix - store weight in matrix entry for (u,v)

A

B C

DE

66
5

34

Paths in Weighted Graphs
The length (or weight) of a path in a
weighted graph is the sum of the edge
weights along that path.

Example: the path (1, 6, 4) has weight 7.

3

2

6

5

4

1
2

2

33
1

5

3

2

6

5

4

1

Computing Shortest Paths in
Unweighted Graphs

• Perform a breadth-first search (that’s it!)

• BFS visits nodes in order of “hop distance”,
or path length!

• BFS(1):

3

2

6

5

4

1

Computing Shortest Paths in
Unweighted Graphs

• Perform a breadth-first search (that’s it!)

• BFS visits nodes in order of “hop distance”,
or path length!

• BFS(1): 0

3

2

6

5

4

1

Computing Shortest Paths in
Unweighted Graphs

• Perform a breadth-first search (that’s it!)

• BFS visits nodes in order of “hop distance”,
or path length!

• BFS(1): 0 1

1

3

2

6

5

4

1

Computing Shortest Paths in
Unweighted Graphs

• Perform a breadth-first search (that’s it!)

• BFS visits nodes in order of “hop distance”,
or path length!

• BFS(1): 0 1

1

22

3

2

6

5

4

1

Computing Shortest Paths in
Unweighted Graphs

• Perform a breadth-first search (that’s it!)

• BFS visits nodes in order of “hop distance”,
or path length!

• BFS(1): 0 1

1

223

Computing Shortest Paths in
Weighted Graphs

BFS doesn’t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1)

3

2

6

5

4

1
2

2

3
3

1

5

Computing Shortest Paths in
Weighted Graphs

BFS doesn’t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1)

0

3

2

6

5

4

1
2

2

3
3

1

5

Computing Shortest Paths in
Weighted Graphs

BFS doesn’t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1)

0 2

2

3

2

6

5

4

1
2

2

3
3

1

5

Computing Shortest Paths in
Weighted Graphs

BFS doesn’t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1)

0 2

2

753

2

6

5

4

1
2

2

3
3

1

5

Computing Shortest Paths in
Weighted Graphs

BFS doesn’t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1)

0 2

2

75
6!

3

2

6

5

4

1
2

2

3
3

1

5

Dijkstra’s Shortest Paths:
Subpaths

Fact: subpaths of shortest paths are shortest paths

Example: if the shortest path from u to w goes
through v, then:

• the part of that path from u to v is the shortest
path from u to v.

• if there were some better path u..v, that would
also be part of a better way to get from u to w.

u v w… …

Dijkstra’s Shortest Paths:
Subpaths

s v w…
v.d wt(v,w)

Fact: subpaths of shortest paths are shortest paths

Consequence: a candidate shortest path from start
node s to some node v’s neighbor w is the shortest
path from to v + the edge weight from v to w.

Shorthand:
• v.d is the shortest (known) distance from the start to v
• wt(v, w) is the weight of the edge from v to w

Dijkstra’s Shortest Paths: Intuition
Intuition: explore nodes like BFS, but in order of path
length instead of number of hops.

There are three kinds of nodes:

• Settled - nodes for which we know the actual shortest path.

• Frontier - nodes that have been visited but we don’t
necessarily have their actual shortest path

• Unexplored - all other nodes.

Each node n keeps track of n.d, the length of the shortest
known known path from start.

We may discover a shorter path to a frontier node than the
one we’ve found already - if so, update n.d.

Dijkstra’s Shortest Paths: Cartoon
settled frontier unexplored

Before:

During:

After:

Dijkstra’s Shortest Paths: Cartoon
settled frontier unexplored

Before:

During:

After:

S

Dijkstra’s Shortest Paths: Cartoon
settled frontier unexplored

Before:

During:

After:

S

S

Dijkstra’s Shortest Paths: Cartoon
settled frontier unexplored

Before:

During:

After:

S

S

S

unreachable nodes

Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

s f w…
f.d

wt(f,w)

Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

s f w…

u…
w.d = u.d + wt(u,w)

settled

Dijkstra’s Shortest Paths:
High-Level Algorithm

s f w…
f.d

wt(f,w)

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

s f w…

u…
w.d = u.d + wt(u,w)

f.d + wt(f,w)

settled
u.d + wt(u,w)

Dijkstra’s Shortest Paths:
High-Level Algorithm

s f w…
f.d

wt(f,w)

Dijkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 ?

1 ?

2 ?

3 ?

4 ?

Best
known
distances:

Settled set:

Frontier set:

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Node d

0 ?

1 ?

2 ?

3 ?

4 0

Settled set: {}

Frontier set: {4}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

3

2

0

4

1

2 4

4 1

3
3

Dijkstra’s Shortest Paths:
Execution

Node d

0 ?

1 ?

2 ?

3 ?

4 0

Settled set: {4}

Frontier set: {}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 4  

3

2

0

4

1

2 4

4 1

3
3

Dijkstra’s Shortest Paths:
Execution

Node d

0 2

1 ?

2 ?

3 ?

4 0

Settled set: {4}

Frontier set: {0}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 4  
w: 0

3

2

0

4

1

2 4

4 1

3
3

Dijkstra’s Shortest Paths:
Execution

Node d

0 2

1 ?

2 ?

3 ?

4 0

Settled set: {4, 0}

Frontier set: {}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 0

3

2

0

4

1

2 4

4 1

3
3

Dijkstra’s Shortest Paths:
Execution

Node d

0 2

1 5

2 ?

3 ?

4 0

Settled set: {4, 0}

Frontier set: {1}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 0  
w: 1

3

2

0

4

1

2 4

4 1

3
3

Dijkstra’s Shortest Paths:
Execution

Node d

0 2

1 5

2 6

3 ?

4 0

Settled set: {4, 0}

Frontier set: {1, 2}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 0  
w: 2

3

2

0

4

1

2 4

4 1

3
3

Dijkstra’s Shortest Paths:
Execution

Node d

0 2

1 5

2 6

3 8

4 0

Settled set: {4, 0, 1}

Frontier set: {2}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 1

3

2

0

4

1

2 4

4 1

3
3

Dijkstra’s Shortest Paths:
Execution

Node d

0 2

1 5

2 6

3 8

4 0

Settled set: {4, 0, 1}

Frontier set: {2, 3}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 1  
w: 3

3

2

0

4

1

2 4

4 1

3
3

Dijkstra’s Shortest Paths:
Execution

Node d

0 2

1 5

2 6

3 8

4 0

Settled set: {4, 0, 1, 2}

Frontier set: {3}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 2

3

2

0

4

1

2 4

4 1

3
3

Dijkstra’s Shortest Paths:
Execution

Node d

0 2

1 5

2 6

3 8

4 0

Settled set: {4, 0, 1, 2}

Frontier set: {3}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 2
w: 3

3

2

0

4

1

2 4

4 1

3
3

Dijkstra’s Shortest Paths:
Execution

Node d

0 2

1 5

2 6

3 8

4 0

Settled set: {4, 0, 1, 2}

Frontier set: {3}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

2.d + wt(2,3) < 3.d

f: 2
w: 3

3

2

0

4

1

2 4

4 1

3
3?

Dijkstra’s Shortest Paths:
Execution

Node d

0 2

1 5

2 6

3 8

4 0

Settled set: {4, 0, 1, 2}

Frontier set: {3}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

2.d + wt(2,3) < 3.d
 6 + 1 < 8

f: 2
w: 3

3

2

0

4

1

2 4

4 1

3
3?

Dijkstra’s Shortest Paths:
Execution

Node d

0 2

1 5

2 6

3 8

4 0

Settled set: {4, 0, 1, 2}

Frontier set: {3}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

2.d + wt(2,3) < 3.d
 6 + 1 < 8

 7 < 8

f: 2
w: 3

3

2

0

4

1

2 4

4 1

3
3?

Dijkstra’s Shortest Paths:
Execution

Node d

0 2

1 5

2 6

3 7

4 0

Settled set: {4, 0, 1, 2}

Frontier set: {3}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

2.d + wt(2,3) < 3.d
 6 + 1 < 8

 7 < 8

f: 2
w: 3

3

2

0

4

1

2 4

4 1

3
3?

Dijkstra’s Shortest Paths:
Execution

Node d

0 2

1 5

2 6

3 7

4 0

Settled set: {4, 0, 1, 2, 3}

Frontier set: {}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)
Empty => done!

f: 3

3

2

0

4

1

2 4

4 1

3
3

