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Single Source Shortest Paths: 
Weighted Graphs 

Dijkstra's Algorithm - Intuition



Goals
Know what a weighted graph is. 

Understand the intuition and high-level 
pseudocode for Dijkstra’s single-source 
shortest paths algorithm. 

Be able to execute Dijkstra's algorithm on 
paper.



Weighted Graphs
Like a normal graph, but edges have weights. 

Formally: a graph (V,E) with an accompanying weight function 
 

• may be directed or undirected. 

Informally: label edges with their weights 

Representation: 

• adjacency list - store weight of (u,v) with v the node in u’s list 

• adjacency matrix - store weight in matrix entry for (u,v)
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Paths in Weighted Graphs
The length (or weight) of a path in a 
weighted graph is the sum of the edge 
weights along that path. 

Example: the path (1, 6, 4) has weight 7.
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Computing Shortest Paths in 
Unweighted Graphs

• Perform a breadth-first search (that’s it!) 

• BFS visits nodes in order of “hop distance”, 
or path length! 

• BFS(1):
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• Perform a breadth-first search (that’s it!) 
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or path length! 
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Computing Shortest Paths in 
Weighted Graphs

BFS doesn’t visit nodes in order of shortest 
path length:

(edge weights)
(shortest path length from node 1)
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Computing Shortest Paths in 
Weighted Graphs

BFS doesn’t visit nodes in order of shortest 
path length:

(edge weights)
(shortest path length from node 1)
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Computing Shortest Paths in 
Weighted Graphs

BFS doesn’t visit nodes in order of shortest 
path length:

(edge weights)
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Computing Shortest Paths in 
Weighted Graphs

BFS doesn’t visit nodes in order of shortest 
path length:

(edge weights)
(shortest path length from node 1)
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Computing Shortest Paths in 
Weighted Graphs

BFS doesn’t visit nodes in order of shortest 
path length:

(edge weights)
(shortest path length from node 1)

0 2

2

75
6!

3

2

6

5

4

1
2

2

3
3

1

5



Dijkstra’s Shortest Paths: 
Subpaths

Fact: subpaths of shortest paths are shortest paths 

Example: if the shortest path from u to w goes 
through v, then: 

• the part of that path from u to v is the shortest 
path from u to v. 

• if there were some better path u..v, that would 
also be part of a better way to get from u to w.

u v w… …



Dijkstra’s Shortest Paths: 
Subpaths

s v w…
v.d wt(v,w)

Fact: subpaths of shortest paths are shortest paths 

Consequence: a candidate shortest path from start 
node s to some node v’s neighbor w is the shortest 
path from to v + the edge weight from v to w.

Shorthand: 
• v.d is the shortest (known) distance from the start to v 
• wt(v, w) is the weight of the edge from v to w



Dijkstra’s Shortest Paths: Intuition
Intuition: explore nodes like BFS, but in order of path 
length instead of number of hops. 

There are three kinds of nodes: 

• Settled - nodes for which we know the actual shortest path. 

• Frontier - nodes that have been visited but we don’t 
necessarily have their actual shortest path 

• Unexplored - all other nodes. 

Each node n keeps track of n.d, the length of the shortest 
known known path from start. 

We may discover a shorter path to a frontier node than the 
one we’ve found already - if so, update n.d.



Dijkstra’s Shortest Paths: Cartoon
settled frontier unexplored
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Dijkstra’s Shortest Paths: Cartoon
settled frontier unexplored
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Dijkstra’s Shortest Paths: 
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
  move the node f with smallest d from F to S
  For each neighbor w of f:
    if we’ve never seen w before:
      set its path length
      add it to frontier
    else if the path to w via f is shorter:
      update w’s shortest path length
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Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
  move the node f with smallest d from F to S
  For each neighbor w of f:
    if we’ve never seen w before:
      set its path length
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Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
  move the node f with smallest d from F to S
  For each neighbor w of f:
    if we’ve never seen w before:
      set its path length
      add it to frontier
    else if the path to w via f is shorter:
      update w’s shortest path length

s f w…

u…
w.d = u.d + wt(u,w)
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settled
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Dijkstra’s Shortest Paths: 
Execution
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Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
  move the node f with smallest d from F to S
  For each neighbor w of f:
    if we’ve never seen w before:
      set its path length to f.d + wt(f,w)
      add w to the frontier
    else if the path to w via f is shorter:
      update w’s shortest path length

shortest-paths(4)
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Dijkstra’s Shortest Paths: 
Execution
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Dijkstra’s Shortest Paths: 
Execution
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Dijkstra’s Shortest Paths: 
Execution
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Dijkstra’s Shortest Paths: 
Execution
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Dijkstra’s Shortest Paths: 
Execution
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Dijkstra’s Shortest Paths: 
Execution
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Execution
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Dijkstra’s Shortest Paths: 
Execution
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Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
  move the node f with smallest d from F to S
  For each neighbor w of f:
    if we’ve never seen w before:
      set its path length to f.d + wt(f,w)
      add w to the frontier
    else if the path to w via f is shorter:
      update w’s shortest path length

shortest-paths(4)
Empty => done!
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