CSCl 247

Scott Wehrwein

Graph Traversals:
Depth-First Search (Recursively)

Goals

Be able to execute and implement depth-
first search to search or traverse a graph.

Graph Algorithms

You can take entire graduate-level courses on graph
algorithms. In this class:

e Search/traversal: search for a particular node or traverse all
nodes (this video; Lab 6)

e Breadth-first
e Depth-first
e Shortest Paths (A4)

 (as time allows) Spanning trees, topological sort

ook, a graph!

Look, a graph!

Depth-first Search

Given a graph and one of its nodes u,
(example: node 1)

o—{

RO S~

(&

Depth-tirst Search

Given a graph and one of its nodes u,
(example: node 1)

"Visit" each node reachable from u

(1,0,2,3,95)
Problem: multiple ways

to get to the same node.

1 (2)—(=) <
How do we visit all nodes

efficiently, without doing

° / extra work?

@ Key Idea: keep track of

where we've been.

Depth-tirst Search

boolean visited|[];

e visited[u] istrue iff Node u has been visited
* Visiting u means setting visited[u] = true;

 vis explorable from u if there is a path (u, ..., v))
in which all nodes along the path are unvisited.

—(O—{>

)
(&

Depth-tirst Search

boolean visited|[];

e visited[u] istrue iff Node u has been visited
* Visiting u means setting visited[u] = true;

 vis explorable from u if there is a path (u, ..., v))
in which all nodes along the path are unvisited.

If all nodes are unvisited,
{2)2

Nodes explorable from 1:
OOy

{1,0,2, 3, 5}.

Depth-tirst Search

boolean visited|[];

e visited[u] istrue iff Node u has been visited
* Visiting u means setting visited[u] = true;

 vis explorable from u if there is a path (u, ..., v))
in which all nodes along the path are unvisited.

If all nodes are unvisited,
2)3

Nodes explorable from 1:

{1,0, 2, 3, 5}
RO

@ Nodes explorable from 4:
{41 5[6I 2/ 3}

Depth-tirst Search

boolean visited|[];

e visited[u] istrue iff Node u has been visited
* Visiting u means setting visited[u] = true;

 vis explorable from u if there is a path (u, ..., v))
in which all nodes along the path are unvisited.

Green nodes (): visited.
Blue nodes: O unvisited.

Depth-tirst Search

boolean visited|[];

e visited[u] istrue iff Node u has been visited
* Visiting u means setting visited[u] = true;

 vis explorable from u if there is a path (u, ..., v))
in which all nodes along the path are unvisited.

1 Q a Green nodes (): visited.
Blue nodes: Ounvisited.
@ Nodes explorable
° 4/‘/ from 1:{1, 0, 5}.

Depth-tirst Search

boolean visited|[];

e visited[u] istrue iff Node u has been visited
* Visiting u means setting visited[u] = true;

 vis explorable from u if there is a path (u, ..., v))
in which all nodes along the path are unvisited.

1 6 a Green nodes (): visited.
Blue nodes: Ounvisited.

@ Nodes explorable

° 4/‘/ from 1:{1, 0, 5}.

@ Nodes explorable
from 4: {} none!

Depth-tirst Search

/** Visit all nodes that are explorable from u.
* Precondition: u is unvisited. */
public static void dfs(int u) {

ORRO S~

Depth-tirst Search

/** Visit all nodes that are explorable from u.
* Precondition: u is unvisited. */
public static void dfs(int u) {

Example:
Letu =1

The nodes explorable
Start: End:from1tlare1,0,2, 3,5

© WY @ S

O O

}

Depth-first Search

/** Visit all nodes that are explorable from u.
* Precondition: u is unvisited. */
public static void dfs(int u) {
visited[u] = true;
Example:

Letu =1
dfs(1) Ihenodes explorable

1 a e from1are1,0,2,3,5

($)
OOy
@/

Depth-first Search

/** Visit all nodes that are explorable from u.
* Precondition: u is unvisited. */
public static void dfs(int u) {
visited[u] = true;
Example:

Lletu =1

dfs(1) Nodes still to be

1 “" (li’ visited: 0,2, 3,5

($)
OOy
@/

Depth-tirst Search

/** Visit all nodes that are explorable from u.
* Precondition: u is unvisited. */
public static void dfs(int u) {
visited[u] = true;

for all edges (u, v) leaving u: Examp\e:

: 1f v 1s unvisited, dfs(v); lety = 1
dfs(1) Nodes still to be
1 e ° visited: 0,2, 3,5

Do a DFS on all
/® neighbors of ul
° ° / Suppose we loop

@ over neighbors in
numerical order.

Depth-first Search

/** Visit all nodes that are explorable from u.
* Precondition: u is unvisited. */
public static void dfs(int u) {
visited[u] = true;

for all edges (u, v) leaving u: Examp\e:
if v 1s unvisited, dfs(v); let y = 1
Nodes still to be
visited: 2, 3,5
Do a DFS on all

neighbors of ul

Suppose we loop
over neighbors in

numerical order.

Depth-first Search

/** Visit all nodes that are explorable from u.
* Precondition: u is unvisited. */
public static void dfs(int u) {
visited[u] = true;

for all edges (u, v) leaving u: Examp\e:
if v 1s unvisited, dfs(v); let y = 1
Nodes still to be
visited: 3, 5
Do a DFS on all

neighbors of ul

Suppose we loop
over neighbors in

numerical order.

Depth-tirst Search

/** Visit all nodes that are explorable from u.
* Precondition: u is unvisited. */
public static void dfs(int u) {
visited[u] = true;

for all edges (u, v) leaving u: Examp\e:
: 1f v 1s unvisited, dfs(v); lety = 1
dfs(1) Nodes still to be
dfs(0) visited: 5
dfs(2) Do a DFS on all
dfs(3) ,
/® neighbors of ul

Suppose we loop
over neighbors in

numerical order.

Depth-tirst Search

/** Visit all nodes that are explorable from u.
* Precondition: u is unvisited. */
public static void dfs(int u) {
visited[u] = true;

for all edges (u, v) leaving u: Examp\e:
} if v 1s unvisited, dfs(v); lety = 1
dfs(1) Nodes still to be
1 a ° dfs(O) visited:

ts(Do a DFS on all

d
dfs (3
/® S() neighbors of ul!
ONRO SaZa gt

Suppose we loop

@ over neighbors in
numerical order.

Depth-tirst Search

/** Visit all nodes that are explorable from u.
* Precondition: u is unvisited. */
public static void dfs(int u) {
visited[u] = true;

for all edges (u, v) leaving u: Examp\e:
} if v 1s unvisited, dfs(v); lety = 1
dfs(1) Nodes still to be
1 a ° dfs (0) visited:
dfs(2)

Do a DFS on all
dfs(3)

O 4/‘/Ql) dfs(5) neighbors of ul!

Supposg we Ioo.p
@ over neighbors in

numerical order.

Depth-tirst Search

/** Visit all nodes that are explorable from u.
* Precondition: u is unvisited. */
public static void dfs(int u) {
visited[u] = true;

for all edges (u, v) leaving u: Examp\e:
: 1f v 1s unvisited, dfs(v); lety = 1
dfs(1) Nodes still to be
1 a ° dfs(O) visited:

ts(Do a DFS on all

d
dfs (3
/® S() neighbors of ul
ONRO S

S |
1£5(5 uppose we loop
@ 5is already over neighborsin

visited! numerical order.

Depth-tirst Search

/** Visit all nodes that are explorable from u.
* Precondition: u is unvisited. */
public static void dfs(int u) {
visited[u] = true;
for all edges (u, v) leaving u:
if v 1s unvisited, dfs(v);

}

Usually, you want to do things in addition to
just "visiting" each node, such as:

e Printthe node or something about it.

e Checkitit'sthe node you were searching for and
terminate if so.

