
CSCI 241
Scott Wehrwein

Graph Traversals:
Depth-First Search (Recursively)

Goals
Be able to execute and implement depth-
first search to search or traverse a graph.

Graph Algorithms
You can take entire graduate-level courses on graph
algorithms. In this class:

• Search/traversal: search for a particular node or traverse all
nodes (this video; Lab 6)

• Breadth-first

• Depth-first

• Shortest Paths (A4)

• (as time allows) Spanning trees, topological sort

Look, a graph!

Look, a graph!

Depth-first Search
Given a graph and one of its nodes u,

21

50

3

4

6

(example: node 1)

Depth-first Search
Given a graph and one of its nodes u,

"Visit" each node reachable from u

21

50

3

4

6

(example: node 1)

(1, 0, 2, 3, 5)
Problem: multiple ways
to get to the same node.

How do we visit all nodes
efficiently, without doing
extra work?

Key Idea: keep track of
where we've been.

Depth-first Search
boolean visited[];

• visited[u] is true iff Node u has been visited
• Visiting u means setting visited[u] = true;
• v is explorable from u if there is a path (u, ..., v))

in which all nodes along the path are unvisited.

21

50

3

4

6

Depth-first Search

21

50

3

4

6

If all nodes are unvisited,

Nodes explorable from 1:
{1, 0, 2, 3, 5}.

boolean visited[];
• visited[u] is true iff Node u has been visited
• Visiting u means setting visited[u] = true;
• v is explorable from u if there is a path (u, ..., v))

in which all nodes along the path are unvisited.

Depth-first Search

21

50

3

4

6

If all nodes are unvisited,

Nodes explorable from 1:
{1, 0, 2, 3, 5}.

Nodes explorable from 4:
{4, 5, 6, 2, 3}

boolean visited[];
• visited[u] is true iff Node u has been visited
• Visiting u means setting visited[u] = true;
• v is explorable from u if there is a path (u, ..., v))

in which all nodes along the path are unvisited.

Depth-first Search

21

50

3

4

6

Green nodes : visited.
Blue nodes: unvisited.

boolean visited[];
• visited[u] is true iff Node u has been visited
• Visiting u means setting visited[u] = true;
• v is explorable from u if there is a path (u, ..., v))

in which all nodes along the path are unvisited.

Depth-first Search

21

50

3

4

6

Green nodes : visited.
Blue nodes: unvisited.

Nodes explorable
from 1: {1, 0, 5}.

boolean visited[];
• visited[u] is true iff Node u has been visited
• Visiting u means setting visited[u] = true;
• v is explorable from u if there is a path (u, ..., v))

in which all nodes along the path are unvisited.

Depth-first Search

21

50

3

4

6

Green nodes : visited.
Blue nodes: unvisited.

Nodes explorable
from 1: {1, 0, 5}.

Nodes explorable
from 4: {} none!

boolean visited[];
• visited[u] is true iff Node u has been visited
• Visiting u means setting visited[u] = true;
• v is explorable from u if there is a path (u, ..., v))

in which all nodes along the path are unvisited.

Depth-first Search
/** Visit all nodes that are explorable from u.
 * Precondition: u is unvisited. */
public static void dfs(int u) {

}

21

50

3

4

6

Depth-first Search
/** Visit all nodes that are explorable from u.
 * Precondition: u is unvisited. */
public static void dfs(int u) {

}

21

50

3

4

6

21

50

3

4

6

Start: End:

Example:
Let u = 1

The nodes explorable
from 1 are 1, 0, 2, 3, 5

Depth-first Search
/** Visit all nodes that are explorable from u.
 * Precondition: u is unvisited. */
public static void dfs(int u) {
 visited[u] = true;

}

Example:
Let u = 1

21

50

3

4

6

The nodes explorable
from 1 are 1, 0, 2, 3, 5

dfs(1)

Depth-first Search
/** Visit all nodes that are explorable from u.
 * Precondition: u is unvisited. */
public static void dfs(int u) {
 visited[u] = true;

}

Example:
Let u = 1

21

50

3

4

6

Nodes still to be
visited: 0, 2, 3, 5

dfs(1)

Depth-first Search
/** Visit all nodes that are explorable from u.
 * Precondition: u is unvisited. */
public static void dfs(int u) {
 visited[u] = true;
 for all edges (u, v) leaving u:
 if v is unvisited, dfs(v);
}

Example:
Let u = 1

21

50

3

4

6

Nodes still to be
visited: 0, 2, 3, 5

Do a DFS on all
neighbors of u!

dfs(1)

Suppose we loop
over neighbors in
numerical order.

Depth-first Search
/** Visit all nodes that are explorable from u.
 * Precondition: u is unvisited. */
public static void dfs(int u) {
 visited[u] = true;
 for all edges (u, v) leaving u:
 if v is unvisited, dfs(v);
}

Example:
Let u = 1

21

50

3

4

6

Nodes still to be
visited: 2, 3, 5

Do a DFS on all
neighbors of u!

dfs(1)

Suppose we loop
over neighbors in
numerical order.

dfs(0)

Depth-first Search
/** Visit all nodes that are explorable from u.
 * Precondition: u is unvisited. */
public static void dfs(int u) {
 visited[u] = true;
 for all edges (u, v) leaving u:
 if v is unvisited, dfs(v);
}

Example:
Let u = 1

21

50

3

4

6

Nodes still to be
visited: 3, 5

Do a DFS on all
neighbors of u!

dfs(1)

Suppose we loop
over neighbors in
numerical order.

dfs(0)

dfs(2)

Depth-first Search
/** Visit all nodes that are explorable from u.
 * Precondition: u is unvisited. */
public static void dfs(int u) {
 visited[u] = true;
 for all edges (u, v) leaving u:
 if v is unvisited, dfs(v);
}

Example:
Let u = 1

21

50

3

4

6

Nodes still to be
visited: 5

Do a DFS on all
neighbors of u!

dfs(1)

Suppose we loop
over neighbors in
numerical order.

dfs(0)

dfs(2)

dfs(3)

Depth-first Search
/** Visit all nodes that are explorable from u.
 * Precondition: u is unvisited. */
public static void dfs(int u) {
 visited[u] = true;
 for all edges (u, v) leaving u:
 if v is unvisited, dfs(v);
}

Example:
Let u = 1

21

50

3

4

6

Nodes still to be
visited:

Do a DFS on all
neighbors of u!

dfs(1)

Suppose we loop
over neighbors in
numerical order.

dfs(0)

dfs(2)

dfs(3)

dfs(5)

Depth-first Search
/** Visit all nodes that are explorable from u.
 * Precondition: u is unvisited. */
public static void dfs(int u) {
 visited[u] = true;
 for all edges (u, v) leaving u:
 if v is unvisited, dfs(v);
}

Example:
Let u = 1

21

50

3

4

6

Nodes still to be
visited:

Do a DFS on all
neighbors of u!

dfs(1)

Suppose we loop
over neighbors in
numerical order.

dfs(0)

dfs(2)

dfs(3)

dfs(5)
dfs(5)

Depth-first Search
/** Visit all nodes that are explorable from u.
 * Precondition: u is unvisited. */
public static void dfs(int u) {
 visited[u] = true;
 for all edges (u, v) leaving u:
 if v is unvisited, dfs(v);
}

Example:
Let u = 1

21

50

3

4

6

Nodes still to be
visited:

Do a DFS on all
neighbors of u!

dfs(1)

Suppose we loop
over neighbors in
numerical order.

dfs(0)

dfs(2)

dfs(3)

dfs(5)
dfs(5)
5 is already
visited!

Depth-first Search
/** Visit all nodes that are explorable from u.
 * Precondition: u is unvisited. */
public static void dfs(int u) {
 visited[u] = true;
 for all edges (u, v) leaving u:
 if v is unvisited, dfs(v);
}

Usually, you want to do things in addition to
just "visiting" each node, such as:

• Print the node or something about it.

• Check if it's the node you were searching for and
terminate if so.

