CSCI 241

Scott Wehrwein

Giraffes: Introduction, Definition

CSCI 241

Scott Wehrwein

Graphs: Introduction, Definition, Terminology

Goals

Know what computer scientists mean when they talk about graphs.

Graph: a bunch of points connected by lines. The lines may have directions, or not.

This is a graph:

The internet's undersea world

The edges are made of these:

Social Networks

(before they were cool)

Locke's (blue) and Voltaire's (yellow) correspondence. Only letters for which complete location information is available are shown. Data courtesy the Electronic Enlightenment Project, University of Oxford.

Social Networks

The USA as a graph:

Neighboring states are connected by edges.

Electrical circuit as a graph

A bigger electrical circuit

400

This is not a graph:

it is a cat.

This is a graph

that can recognize cats.

Graphs: The Abstract View Graph: a bunch of points connected by lines. The lines may have directions, or not.

 $K_{3,3}$

Graphs, Formally

A directed graph (digraph) is a pair (**V**, **E**) where:

- V is a (finite) set
- **E** is a set of **ordered** pairs (u, v) where u, v are in **V**
- Often (not always): u ≠ v
 (i.e., no edges from a vertex to itself)

An element in **V** is called a vertex or node

Elements in **E** are called edges or arcs

 $|\mathbf{V}|$ = size of \mathbf{V} (traditionally called n or v)

E = size of **E** (traditionally called **m** or **e**)

An example directed graph

 $V = \{A, B, C, D, E\}$ $E = \{(A, C), (B, A), (B, C), (C, D), (D, C)\}$

|V| = 5 **|E|** = 5

Graphs, Formally

В

D

An **un**directed graph is a just like a digraph, but

- E is a set of \boldsymbol{un} ordered pairs (u, v) where u, v are in V

 $V = \{A, B, C, D, E\}$ $E = \{(A, C), (A, B), (B, C), (C, D)\}$ |V| = 5 |E| = 4

Any **un**directed graph has an equivalent **directed** graph:

• Replace each undirected edge with two directed edges

A **directed** graph doesn't always have an equivalent **undirected** graph.