
CSCI 241
Scott Wehrwein

Hash Tables: Open Addressing

Goals
Know how to use open addressing with
linear or quadratic probing for collision
resolution.

Load Factor: Performance Implications
 
Load factor λ =

entries in table

size of the array

If λ is small, memory is wasted.If λ is large, runtime is slow.

If the memory's sitting there wasted... why not use it?

Open Addressing with Linear Probing
• Open Addressing - use empty buckets to

store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0
1
2
3
4

put(1, “dog”);
put(11, “auk”);
put(10, “bear”);
put(14, “cat”);
put(24, “ape”);

put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value

0
1 (1, dog)
2
3
4

put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value

put(1, “dog”);
put(11, “auk”);
put(10, “bear”);
put(14, “cat”);
put(24, “ape”);

Open Addressing with Linear Probing
• Open Addressing - use empty buckets to

store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0
1 (1, dog)
2 (11, auk)
3
4

put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value

put(1, “dog”);
put(11, “auk”);
put(10, “bear”);
put(14, “cat”);
put(24, “ape”);

Open Addressing with Linear Probing
• Open Addressing - use empty buckets to

store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0 (10, bear)
1 (1, dog)
2 (11, auk)
3
4

put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value

put(1, “dog”);
put(11, “auk”);
put(10, “bear”);
put(14, “cat”);
put(24, “ape”);

Open Addressing with Linear Probing
• Open Addressing - use empty buckets to

store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0 (10, bear)
1 (1, dog)
2 (11, auk)
3
4 (14, cat)

put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value

put(1, “dog”);
put(11, “auk”);
put(10, “bear”);
put(14, “cat”);
put(24, “ape”);

Open Addressing with Linear Probing
• Open Addressing - use empty buckets to

store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0 (10, bear)
1 (1, dog)
2 (11, auk)
3 (24, ape)
4 (14, cat)

put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value

put(1, “dog”);
put(11, “auk”);
put(10, “bear”);
put(14, “cat”);
put(24, “ape”);

Open Addressing with Linear Probing
• Open Addressing - use empty buckets to

store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

Problem:

Clustered hash values will
result in a lot of searching.

0 (10, bear)
1 (1, dog)
2 (11, auk)
3 (24, ape)
4 (14, cat)

put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value

put(1, “dog”);
put(11, “auk”);
put(10, “bear”);
put(14, “cat”);
put(24, “ape”);

Open Addressing with Linear Probing
(e.g., 1, 1, 3, 2, 3, 4, 6, 4, 5)

Open Addressing with
Quadratic Probing

Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

0 (10, bear)
1 (1, dog)
2 (11, auk)
3 (24, ape)
4 (14, cat)

put(key):
 H = hash(key);
 i = 0;
 while A[h] is full:
 h = (H + i2) % N
 i++;
 A[h] = value

Linear probing looks at H, H+1, H+2, H+3, H+4, …
Quadratic probing looks at H, H+1, H+4, H+9, H+16, …

put(1, “dog”);
put(11, “auk”);
put(10, “bear”);
put(14, “cat”);
put(24, “ape”);

Open Addressing: Runtime
• May be faster, but may not be. Depends on keys.

• There’s no free lunch: worst-case is always O(n).

• In practice, average-case is O(1) if you make
good design decisions and insertions are not
done by someone who wants to ruin your day.

