CSCl 247

Scott Wehrwein

Hash Tables: Rehashing

Goals

Know how and why to grow and shrink the
capacity of a hash table by resizing the array
and rehashing its contents.

Be prepared to implement rehashing so it
runs in worst-case O(C + n).

L oad Factor: Performance Implications

entries in table

Load factor A =
size of the array

If Nis large, runtime is slow. It Ais small, memory is wasted.

Strategy: grow or shrink array when A gets too large or small.

Shrinking the array

Need to rehash: put each element where it belongs in the new array.

NO 0O NN O O A W N — O

— 10 |“bear” | — (0%3)
—— 1 11 dogll 1 1 11 aukl’ (% 3)
(11 % 3)->
—T 14 |“cat” |24 |“ape” (%3)
(24 %)>O
0 —> 24 | “ape”|
1 — 10 |“bear” | —*1|“dog”| —
2 —11| “auk”| 14 |“cat” | T

Rehashing: Runtime, take 1

© 00O NO O~ W DN =2 O

Let C = array size

ibear” | - Let n = number of entries

lldogll — 11 14 aukl’

Overall runtime is:

e worst-case O(C + n?)

H~agt !’ | —> 24 uape" ¢ average_case O(C + n)

visits C buckets
Rehashing algorithm: l visits n entries (total)

could be O(n) =(
for each bucket b:
for each element e in b:l

put e into the new array

Rehashing: Runtime, take 2

——10 |“bear” | —
—— 1 11 dog 144 — 1 1 11 auk 144
— 14 |“cat” |24 |“ape”

© 00 N O O & WD = O

for each bucket b: l
for each element e in b:l

Let C = array size
Let n = number of entries

Overall runtime is:
e worst-case O(C + n)

visits C buckets

Rehashing algorithm: l visits n entries (total)

could it be O(n)?

put e i1nto the new array

put is O(n) because it has to search for existing keys.

Here, we can’t have duplicate keys: all entries were already in the map!
Consequence: we don't need to search the bucket when rehashing

