
CSCI 241
Scott Wehrwein

Binary Search Trees: Removal

Goals
Be able to remove a node from a BST on
paper.

Be prepared to implement BST removal.

Warm-up
Write a method to find the smallest value in a BST:
/** Returns min value in BST n.
 * pre: n is not null */
public int minimum(Node n) {

}

1. Spec
2. Base case
3. Recursive definition
4. Implement 3 with recursive calls.

10

8 16

9 11 174

10

12

14

15

16

Warm-up
Write a method to find the smallest value in a BST:
/** Returns min value in BST n.
 * pre: n is not null */
public int minimum(Node n) {
 if (n.left == null)
 return n.value;

}

1. Spec
2. Base case
3. Recursive definition
4. Implement 3 with recursive calls.

10

8 16

9 11 174

10

12

14

15

16

/** Returns min value in BST n.
 * pre: n is not null */
public int minimum(Node n) {
 if (n.left == null)
 return n.value;

}

Warm-up
Write a method to find the smallest value in a BST:

3. Recursive definition:
Smallest(n) is:
• the smallest value in the left subtree, or
• n.value if no left subtree exists.

1. Spec
2. Base case
3. Recursive definition
4. Implement 3 with recursive calls.

10

8 16

9 11 174

10

12

14

15

16

/** Returns min value in BST n.
 * pre: n is not null */
public int minimum(Node n) {
 if (n.left == null)
 return n.value;
 return minimum(n.left);
}

Warm-up
Write a method to find the smallest value in a BST:

3. Recursive definition:
Smallest(n) is:
• the smallest value in the left subtree, or
• n.value if no left subtree exists.

1. Spec
2. Base case
3. Recursive definition
4. Implement 3 with recursive calls.

10

8 16

9 11 174

10

12

14

15

16

Deleting a node from a BST

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

10

8 16

9 11 17

if (n is a leaf)
 replace parent’s child with null

x

Deleting a node from a BST:
Case 1

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

10

8 16

9 11 17

if (n has exactly one child)
 replace parent’s child with n’s child
 replace n’s child’s parent with n’s parent

Deleting a node from a BST:
Case 2

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

x

x

10

8 16

9 11 17

if (n has exactly one child)
 replace parent’s child with n’s child
 replace n’s child’s parent with n’s parent

Deleting a node from a BST:
Case 2

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

10

16

9 11 17

if (n has exactly one child)
 replace parent’s child with n’s child
 replace n’s child’s parent with n’s parent

Deleting a node from a BST:
Case 2

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

10

169

11 17

if (n has two children)

Deleting a node from a BST: 
Case 3

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

10

8 16

9 11 17

12

if (n has two children)
 let k = min node in right subtree

Deleting a node from a BST: 
Case 3

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

10

8 16

9 11 17

12

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value

Deleting a node from a BST: 
Case 3

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

10

8 16

9 11 17

12

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value

Deleting a node from a BST: 
Case 3

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

Can we do that?
• k is n’s successor (next in an in-order traversal)
• Everything else in n’s right subtree is bigger than it
• Everything in n’s left subtree is smaller than it
• k’s value can safely replace n’s…but now we have a duplicate.

11

8 16

9 11 17

12

Deleting a node from a BST: 
Case 3

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

11

8 16

9 11 17

12

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree

Deleting a node from a BST: 
Case 3

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

11

8 16

9 11 17

12

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree

Deleting a node from a BST: 
Case 3

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

11

8 16

9 17

12

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree (recursively!)

Three possible cases:
1. n has no children (is a leaf)
2. n has one child
3. n has two children

Deleting a node from a BST: 
Case 3

11

8 16

9 1712

Question: does this always make progress towards the base case?

Details
• Handle the root:

• Update root pointer if root is removed.

• Can’t assume n.parent is non-null

• To update parent’s child pointer, you need to
know which (L or R) child pointer to update.

• The approach presented differs from that in
CLRS and some other resources.

