CSCl 247

Scott Wehrwein

Trees: Traversals and Thinking Recursively

Goals

Be able to implement a simple tree class and
basic operations such as search and size.

Know how to execute on paper and
implement pre-order, in-order, and post-

order tree traversals.

Implementing Trees

/** A binary tree */ /** A general tree */
public class Tree { ©public class Tree {

int value; int value;
Tree left; List<Tree> children;
Tree right; }

}

This is a recursive definition.

Thinking about trees recursively

A binary tree is
e Empty, or

e Three things:
e value
e aleftbinarytree

e arightbinary tree

Thinking about trees recursively

/** A binary tree */
public class Tree {
int value;
Tree left;

A binary tree is Tree right;
}

e Empty, or

e Three things:
e value
e aleftbinarytree

e arightbinary tree

Thinking about trees recursively

/** A binary tree */
public class Tree {
int value;
Tree left;

A binary tree is Tree right;

}
* Three things: /@\@
e value &) \@é \@

e aleftbinarytree

e Empty, or

e arightbinary tree

Thinking about trees recursively

/** A binary tree */
public class Tree {
int value;
Tree left;

A binary tree is Tree right;
e Empty, or

e Three things:
e value
e aleftbinarytree

e arightbinary tree

Operations on trees

often follow naturally from the definition of the tree:

A binary tree Is Find v in a binary tree:

e Empty, or (base case - not found!)

e Three things:

_is this v?
e value (base case - is this v?)
* aleft binary tree (recursive call - is v in left?)

e arightbinary tree
(recursive call - is v in right?)

Finding a value in a tree

code follows naturally from the definition of the tree:

A binary tree is
e Empty, or

e Three things:
e value
e aleftbinarytree

e arightbinary tree

Find v in a binary tree:
boolean findVal(Tree t, int v):

(base case - not found!)
if t == null:
return false

(base case - is this v?)
i1f t.value == v: return true

(recursive call - is vin left?)

return findvVal(t.left)
|| findvVal(t.right)
(recursive call - is v in right?)

Traversing a Iree

Print (or "visit") every node in a tree:

A binary tree IS Print all nodes in a binary tree:

volid printTree(Tree t):

(base case - nothing to print)
if t == null:
return

e Empty, or

e Three things:

(print this node’s value)

o
‘VahJe System.out.println(t.value)

e aleftbinary tree (recursive call - print left subtree)

printTree(t.left)

e aright binary tree . o
J Y (recursive call - print right subtree

printTree(t.right)

Traversing a Iree

Print (or otherwise process) every node in a tree:

T— Print all nodes in a binary tree:
/;?:K\ volid printTree(Tree t):
4 @ (base case - nothing to print)

if t == null:
@ return

_ , (print this node’s value)
:xamp\e: printTree(T) system.out.println(t.value)

(recursive call - print left subtree)
printTree(t.left)

(recursive call - print right subtree
printTree(t.right)

Tree Traversals

"Walking” over the whole tree is called a tree traversal
This is done often enough that there are standard names.

Previous example was a pre-order traversal:

1.
2.
3.

Process root
Process left subtree

Process right subtree

Other common traversals:

in-order traversal:

1.
2.
3.

Process left subtree
Process root
Process right subtree

post-order traversal:

1.
2.
3.

Process left subtree
Process right subtree

Process root

