
CSCI 241
Scott Wehrwein

Trees: Traversals and Thinking Recursively

Goals
Be able to implement a simple tree class and
basic operations such as search and size.

Know how to execute on paper and
implement pre-order, in-order, and post-
order tree traversals.

Implementing Trees
/** A binary tree */
public class Tree {
 int value;
 Tree left;
 Tree right;
}

/** A general tree */
public class Tree {
 int value;
 List<Tree> children;
}

This is a recursive definition.

A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

Thinking about trees recursively

Thinking about trees recursively
/** A binary tree */
public class Tree {
 int value;
 Tree left;
 Tree right;
}

A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

Thinking about trees recursively

9

8 3 5 7

2

0

A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

/** A binary tree */
public class Tree {
 int value;
 Tree left;
 Tree right;
}

Thinking about trees recursively

9

8 3 5 7

2

0

2

/** A binary tree */
public class Tree {
 int value;
 Tree left;
 Tree right;
}

A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

Operations on trees
often follow naturally from the definition of the tree:

(base case - not found!)

(base case - is this v?)

(recursive call - is v in left?)

(recursive call - is v in right?)

Find v in a binary tree:A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

Finding a value in a tree

boolean findVal(Tree t, int v):

 if t == null:
 return false

 if t.value == v: return true

return findVal(t.left)
 || findVal(t.right)

(base case - not found!)

(base case - is this v?)

(recursive call - is v in left?)

(recursive call - is v in right?)

Find v in a binary tree:A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

code follows naturally from the definition of the tree:

Traversing a Tree
Print (or "visit") every node in a tree:

Print all nodes in a binary tree:
void printTree(Tree t):

(base case - nothing to print)
 if t == null:
 return

(print this node’s value)
System.out.println(t.value)

(recursive call - print left subtree)
printTree(t.left)

(recursive call - print right subtree)
printTree(t.right)

A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

Traversing a Tree
Print (or otherwise process) every node in a tree:

5

4

7 8 9

2

General tree

5

4

7 8

2

Binary tree

5

4

7 8

Not a tree

5

6

8
List-like tree

T Print all nodes in a binary tree:
void printTree(Tree t):

(base case - nothing to print)
 if t == null:
 return

(print this node’s value)
System.out.println(t.value)

(recursive call - print left subtree)
printTree(t.left)

(recursive call - print right subtree)
printTree(t.right)

Example: printTree(T)

Tree Traversals
“Walking” over the whole tree is called a tree traversal
This is done often enough that there are standard names.
Previous example was a pre-order traversal:

1. Process root
2. Process left subtree
3. Process right subtree

Other common traversals:

post-order traversal:
1. Process left subtree
2. Process right subtree
3. Process root

in-order traversal:
1. Process left subtree
2. Process root
3. Process right subtree

