
CSCI241 Spring 2022: Lab 1

Overview

The purpose of this lab is to give you basic familiarity with some of the tools we’ll be using
in this class, namely git and gradle.

Git

Git is a version control system that is used to keep track of changes you make your code. We
will use git in conjunction with Github, a web-based service that hosts git repositories.

A git repository is a place where your code lives. The internal data needed to track versions
of your code is stored in a hidden folder (called .git at the base directory (“root”) of your
repository, but you don’t need to worry about that - you’ll use the git command-line tool
to work with the version control system. Github hosts a remote copy of your code on their
servers, which other people (e.g., me when I go to grade your work) can access and create
separate copies of (“clone”).

The basic workflow for using git and Github is to (1) make some changes to your code,
(2) commit those changes to the repository to put them in the official record of version
history, and when you’ve reached a stopping point, (3) push to Github to update the hosted
repository to reflect the changes you’ve committed to your local repository (“repo”, for short).
When you’ve followed this workflow and gradually made changes over time, git makes it easy
to move forward and backward in history, for example to roll back to an old version of your
code to find a version before a bug was introduced.

Gradle

Gradle is a build system that is used to take care of a lot of the logistics of building, running,
and testing your code. It was created for Java, but it can be used for many languages. Once
things are properly set up (we’ll largely take care of this for you in this course), you compile
your code with javac and run it with java, but instead use commands like gradle build

and gradle test to compile, run, and execute tests on your code.
Keep in mind, this lab is just getting you started; you are not expected to become an

expert in all the nuances of these tools yet—expertise will come with time and experience.
The goal here is to get you ready to work on future labs and assignments.

Walkthrough - Git

Complete the following steps.

1

Setup

1. Assignments in this class will be done in GitHub repositories orchestrated by GitHub
Classroom. Log into Canvas, find the Lab 1 assignment, and click the GitHub Classroom
invitation link found there. You will need to log into your GitHub account if you haven’t
already.

2. Once you have accepted the GitHub Classroom invitation, you will be given a link to
your repository for this assignment. This link should be in the form of:

https://github.com/csci241-22s/lab-1-username

You should be able to click this link and see the repository on GitHub.

3. The git repository now exists on GitHub’s servers, but you still need to clone a local
copy of the code so you can work on it. You will need to choose a location for the local
lab1 repository and working copy. You may choose whatever location you like; here we
will assume you choose ~/csci241/. Note that the ~ indicates that the csci241 directory
lives inside your home directory (usually /home/username, on linux systems), which is
where you should be when you open a new terminal window. To create this directory,
type mkdir csci241. Enter the directory using the cd command: cd csci241. You
can list the contents of the directory (it should be empty) using ls.

4. Create a working copy of your code by cloning the repository from GitHub. You can
copy the command from the green button that says ”clone or download” on GitHub, or
type it yourself:

replace username with your github username

git clone https://github.com/csci241-22s/lab-1-username

This should clone the repository into a new directory called lab1-username, which you
should now see if you type ls.

Basic Git Operations

5. Before you use Git commands for the first time, you need to tell it a little bit about
yourself. You’ll only need to do this once for each computer you use git on. Change
directory into your freshly cloned repository and run the following commands, supplying
your full name and email address:

sub in your name

git config --global user.name "Your Name Goes Here"

replace username w/ your wwu username

git config --global user.email username@wwu.edu

2

6. Now you will a writeup file and tell git to track it (that is, include it in your repository).
Note that spelling, spacing and capitalization matter in the following commands:

touch writeup.txt

git add writeup.txt # run "git help add" for details

This git add does two things: 1) it begins “tracking” writeup.txt and 2) it “stages”
the changes to the file (in this case, its creation) so it will be incorporated in the next
commit.

7. Commit your changes to the local repository:

git commit -m "Added empty writeup"

The text in quotes is the commit message; aim for it to be concise yet specific. Bad
commit messages include "Made some changes", "stuff", and "more edits". At this
stage your changes have been stored on the local repository but not in the “remote”
repository stored on Github. You can confirm this by browsing to the Github URL for
your repository:

https://github.com/wehrwein-teaching/lab-1-username

You should see that writeup.txt is not listed among the files on GitHub.

8. To synchronize your local repo with the version on GitHub, push your changes from the
local repository to the original one:

git push # sometimes it wants you to be more specific: git push origin main

Now refresh the Github URL, and you should see writeup.txt file.

9. Edit writeup.txt, so that it contains the line 1) First Last where you replace First Last

with your first and last names.

10. Stage these changes for commit:

git add writeup.txt

While writeup.txt is already tracked, this will stage the change.

11. Commit your changes:

git commit -m "Added part 1 (names) to writeup"

12. git status lets you know the status of your working copy and local repository. Run
the command and see what it reports. Now edit writeup.txt again, adding the line
2) Hobby: XYZ where you replace XYZ with a hobby of yours. Check the status after
making this edit. Check the status again after git adding the writeup. Check the status
again after committing, and then again after pushing.

3

13. Create another file in your repository called username.txt. Edit this file to contain
exactly the following three items, separated by commas, with no extra spacing:

• First and last name

• WWU Username

• Github username

For example, Scott’s username.txt would read:

Scott Wehrwein,wehrwes,swehrwein

Commit username.txt to your repository.

14. Learn your way around the following commands (use git help or search the web for
details). Be sure to try out each command at least once and get familiar with how they
work.

(a) git checkout and git reset to undo a change to a file

(b) git rm to delete a file from the repository

(c) git mv to rename a file (if you move writeup, move it back after)

(d) git blame to see who edited which lines when

(e) git log to see your commit history

(f) git diff to see unstaged changes to a local file

(g) git diff to see changes between two different committed versions of writeup.txt

Here’s a recommended approach:

(a) After making sure your writeup.txt is committed, delete its contents and save it.
Then recover the last committed version of the file using git checkout.

(b) Create a new file and commit it. Rename it using git mv, commit, then git rm

the file and commit again.

(c) Make a change to writeup.txt and run git diff to see the latest changes, then use
git diff with arguments to see the difference between the last committed version
and the commit before you added the hobby to your writeup.

Make sure that by the end of playing around with those commands your writeup.txt

is back to being named writeup.txt and contains the two lines described above, and
your username.txt also conforms to the specification given above.

4

Branching and Merging

15. Read through Git’s documentation on branching and merging:

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

16. Create a branch named song and checkout that new branch. Edit your writeup.txt

to add the line 3) Favorite song: ABC by XYZ where you replace ABC with the track
name of your favorite song and XYZ by the artist/band of the song. Add and commit
your change to the branch, then merge the changes into the main branch. Normally,
you’d delete a branch after you’ve merged it into main in order to keep the repository
from getting too messy. In this case, go ahead and leave this branch. Sometimes, you’ll
just use a branch in your local copy and the remote (github) repo never needs to know.
However, if you are working on a branch and, say, need to collaborate with someone else
on that branch, you’ll need to sync up your local branch with a corresponding branch
on the remote copy. To do this, you’ll need to issue the following command:

git push --set-upstream origin song

What’s happening here? You’ve seen git push before. Here, we’re telling git that we
want to push the local song branch to the origin remote repository, and since the
branch doesn’t already exist up on the remote copy, --set-upstream tells git to set up
a branch on the remote that tracks with your local branch; this way, next time you git

push, git will know to push your local song branch to the corresponding one on github.

Java and Gradle

In this class, we’ll be writing our code in java. To facilitate the process of compiling,
testing, and running code, we’ll be using a build tool called Gradle. This replaces the
command line workflow (using javac to compile and java to run) or the build-and-run
functionality provided by IDEs.

Your repository already contains the directory structure used by Gradle to keep track
of source code and compiled programs. You will find a file called Hello.java in the
app/src/main/java/lab1/ directory. This file contains a Java implementation of the
canonical “Hello, World” program.

17. Whereas you may be accustomed to compiling and running programs directly using the
javac and java commands, we will instead use Gradle to compile and run the program
for us. Gradle needs to be run from the project root directory or the app directory, so
make sure your terminal is there. Then, you can run the Hello World program with the
following command:

gradle run

5

Note that if the code hasn’t been compiled yet (or has been changed since it was last
compiled), gradle will automatically compile it for you before trying to run the program.

18. Edit app/src/main/java/lab1/Hello.java, modifying the program to print the con-
tents of the 0th command-line argument instead of “world”. Recall that the args

parameter to the main method contains the command line arguments passed to a Java
program.

19. Run your modified code and see if it works as expected. To pass command-line arguments
to your program via gradle, use the --args flag as follows:

gradle run --args="your args here"

A sample invocation of the modified program should look something like this:

$ gradle run --args="241"

> Task :run

Hello, 241!

BUILD SUCCESSFUL in 0s

2 actionable tasks: 2 executed

Stage, commit, and push your changes to Hello.java:

git add app/src/main/java/lab1/Hello.java

git commit -m "Hello now prints command line arg"

git push

Running Unit Tests

In this final section, you’ll make one final modification to your main program, and learn
how to run unit tests in the process. A unit test is a piece of code that verifies that
some small piece of your program’s code behaves as expected. We’ll talk more about
unit tests in the next lab, but for now you’ll learn the basics of running and debugging
using unit tests in gradle. Our goal in this section is to make one more modification
to the Hello world program so that instead of “Hello”, it prints the time-appropriate
greeting “Good morning”, “Good afternoon”, or “Good evening”. Notice that there’s a
method in Hello.java called getGreeting that currently just returns "Good morning".
If you’re working on this in the morning, that’s the correct behavior!

6

20. I’ve written some unit tests for you to make sure that all of the cases are covered
correctly. If you open the file app/src/test/java/HelloTest.java, you’ll find that it
contains three methods that pass different LocalDateTime objects to the getGreeting

method to make sure it gives the correct response. You can run these tests using gradle
by entering the command gradle test. When you do so, you should find that your
code currently fails two of the three tests, giving you a helpful message, the relevant
part of which looks something like this:

lab1.HelloTest > test01afternoon FAILED

org.junit.ComparisonFailure: expected:<Good [morning]> but was:<Good [afternoon]>

at org.junit.Assert.assertEquals(Assert.java:115)

at org.junit.Assert.assertEquals(Assert.java:144)

at lab1.HelloTest.test01afternoon(HelloTest.java:41)

lab1.HelloTest > test02evening FAILED

org.junit.ComparisonFailure: expected:<Good [mor]ning> but was:<Good [eve]ning>

at org.junit.Assert.assertEquals(Assert.java:115)

at org.junit.Assert.assertEquals(Assert.java:144)

at lab1.HelloTest.test02evening(HelloTest.java:48)

3 tests completed, 2 failed

FAILURE: Build failed with an exception.

* What went wrong:

Execution failed for task ’:test’.

> There were failing tests. See the report at: file:///Users/wehrwes/Documents/2220/241/skeletons/lab1/build/reports/tests/test/index.html

From this, we can see that two of the three tests failed. Furthermore, you can see the
stack trace including the specific line of each test that failed, which can be immensely
helpful for debugging.

21. Modify the getGreeting method to change the greeting based on the LocalDateTime

object passed as an argument to the method. The documentation for this class can be
found here: https://docs.oracle.com/javase/8/docs/api/java/time/LocalDateTime.
html. When you’re done, re-run gradle test and see if your tests pass. If a test is
still failing, find the line that’s triggering the test failure to see if that gives you any
insight into what’s going wrong. Debug your getGreeting method until it passes all
three tests.

22. The unit tests are intentionally focused on just the getGreeting method; the behavior
of your main program should be unchanged up to this point. Now that you know
getGreeting is correct, use it in your main program to print the appropriate greeting
in place of “Hello”. For instance, as I write this around 2:30pm, entering gradle run

7

--args "241" on the command line results in my program printing Good afternoon,

241!".

You can get a current LocalDateTime object using the static LocalDateTime.now()

method. Use gradle run to check that you get the correct output for the current time
of day. You won’t be able to test the rest of the cases unless you wait a while, but that’s
why we had unit tests—to make sure all the cases are handled correctly. As usual,
commit and push your changes to github when you have things working.

Submission

Make sure that you’ve followed all of the steps above, all of your latest changes are committed
to your repository (check this using git status), and push your submission to github. In
this and every other git-based assignment in this course, that’s all you have to do! We’ll clone
your code from github and provide you with feedback in the “Feedback” pull request (see the
syllabus for details on how to view your feedback).

Grading

This lab is worth 10 points, assigned as follows:

• 5 points: All steps are completed and your repository’s state is as specified; we will
check this using git log and git blame.

• 2 points: username.txt contains name, username, and github username as specified

• 1 point: writeup.txt contains name, hobby, and song as specified.

• 1 point: getGreeting passes all three unit tests

• 1 point: Hello.java prints the appropriate greeting followed by the 0th command-line
argument, followed by “!”

Acknowledgments

This lab is based on materials developed and refined by Tanzima Islam, Brian Hutchinson,
Filip Jagodzinski, Qiang Hao, Nicholas Majeske, and several past TAs.

8

