
CSCI 241
Lecture N-1


Graph Planarity

Topological Sort



Announcements
• Quiz 6 grades are out.


• video coming soon


• A4 is due Wednesday


• No lab deliverable this week.


• TAs will be available in lab sections for questions. 


• Material from today onward will not be on the exam


• this week: a mix of fun bonus topics and review



Tentative Goals - This week
• Analyze the runtime of Dijkstra's algorithm.


• Know the definition of graph planarity


• Know how to use Topological Sort to determine whether a graph is 
acyclic.


• Know the definition of a spanning tree.


• Know how to build spanning trees using:


• Prim's algorithm


• Kruskal's algorithm


• Coding trees?


• Tries?



Exercise: Analyze the runtime 
of Dĳkstra's Algorithm.

S = { }; F = {v};  v.d = 0;
while  (F ≠ {})  {
    f = node in F with min d value;
         Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
      }
   }
}

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci241_20s/lectures/L21/algorithm.pdf
Course webpage > Schedule > 5/27 > algorithm

Let e = |E|, v = |V|

Assume hash table lookups are O(1).

For all else, assume worst-case. 

One group member: submit your 
group's answer via Socrative.

Pseudocode is available at:

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci241_20s/lectures/L21/algorithm.pdf
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Drawing Graphs
• The same graph can be drawn (infinitely!) 

many different ways.

3

2

6

5

4

1

3

2

6

5

4

1

V = {1,2,3,4,5,6} 

E = {(1,2), (2,5), (3,5)


(4,5), (5,6)}



Planarity
• If a graph can be drawn without crossing 

edges, it is planar.
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Planarity
• If a graph can be drawn without crossing 

edges, it is planar.
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Detecting Planarity

• There’s a (non-obvious) theorem that says a 
graph is planar if and only if it does not 
contain* one of these as a subgraph:

K5
K3,3

A subgraph of a graph is a graph whose vertex and edge 
sets are subsets of the larger graph’s. 

• Elements of the edge subset can only contain nodes in the vertex subset.

*The definition of 
“contain” is slightly more 
general than having one 
of these directly as a 
subgraph.



Detecting DAGs
• A DAG, or Directed Acyclic Graph is a…

graph that is directed and acyclic.
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Is this a DAG?
• How do we tell if a directed graph is acyclic?


• If a node has indegree 0, it can’t be part of a cycle.


• Edges coming from that node also can’t be part of a cycle.
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Is this a DAG?
• How do we tell if a directed graph is acyclic?


• If a node has indegree 0, it can’t be part of a cycle.


• Edges coming from that node also can’t be part of a cycle.


Algorithm:


    while there is a node with indegree 0:


       delete the node and all edges coming from it


    if the graph is empty, the original graph was a DAG
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Topological Sort
Topological sort (or toposort):

    i = 0


    while there is a node with indegree 0:


       delete* the node and all edges coming from it


       label* the deleted node i


       increment i


    if the graph is empty, the original graph was a DAG



Topological Sort
Topological sort (or toposort):

    i = 0


    while there is a node with indegree 0:


       delete* the node and all edges coming from it


       label* the deleted node i


       increment i


    if the graph is empty, the original graph was a DAG

*This is pseudocode: we probably don’t want to actually modify the graph. 
We’ll need to store extra data with nodes and edges, and possibly overlay 
additional data structures to make it efficient. 



Topological Sort
• Here are the labels we applied to the example graph:


• Property: all edges go from a lower-numbered node 
to a higher-numbered node.


• Useful for dependency resolution, job scheduling, 


• Ordering is not necessarily unique: could have 
chosen from among multiple nodes with indegree 0.
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Tensorflow Computation Graphs

slide credit: O’Reilly Media, Python Machine Learning





Word Problems!


