
CSCI 241
Lecture N-1

Graph Planarity

Topological Sort

Announcements
• Quiz 6 grades are out.

• video coming soon

• A4 is due Wednesday

• No lab deliverable this week.

• TAs will be available in lab sections for questions.

• Material from today onward will not be on the exam

• this week: a mix of fun bonus topics and review

Tentative Goals - This week
• Analyze the runtime of Dijkstra's algorithm.

• Know the definition of graph planarity

• Know how to use Topological Sort to determine whether a graph is
acyclic.

• Know the definition of a spanning tree.

• Know how to build spanning trees using:

• Prim's algorithm

• Kruskal's algorithm

• Coding trees?

• Tries?

Exercise: Analyze the runtime
of Dĳkstra's Algorithm.

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci241_20s/lectures/L21/algorithm.pdf
Course webpage > Schedule > 5/27 > algorithm

Let e = |E|, v = |V|

Assume hash table lookups are O(1).

For all else, assume worst-case.

One group member: submit your
group's answer via Socrative.

Pseudocode is available at:

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci241_20s/lectures/L21/algorithm.pdf

Exercise: Analyze the runtime
of Dĳkstra's Algorithm.

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci241_20s/lectures/L21/algorithm.pdf
Course webpage > Schedule > 5/27 > algorithm

Let e = |E|, v = |V|

Assume hash table lookups are O(1).

For all else, assume worst-case.

https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci241_20s/lectures/L21/algorithm.pdf

Drawing Graphs
• The same graph can be drawn (infinitely!)

many different ways.

3

2

6

5

4

1

3

2

6

5

4

1

V = {1,2,3,4,5,6}

E = {(1,2), (2,5), (3,5)

(4,5), (5,6)}

Planarity
• If a graph can be drawn without crossing

edges, it is planar.

Planarity
• If a graph can be drawn without crossing

edges, it is planar.

3

2

6

5
4

1

Planar

Planarity
• If a graph can be drawn without crossing

edges, it is planar.

3

2

6

5

4
1

Planar3

2

6

5
4

1

Planar

Planarity
• If a graph can be drawn without crossing

edges, it is planar.

3

2

6

5

4
1

Planar3

2

6

5
4

1

Planar

3

2

6

5

1

Planarity
• If a graph can be drawn without crossing

edges, it is planar.

3

2

6

5

4
1

Planar3

2

6

5
4

1

Planar

3

2

6

5

1

Planar(!)

Planarity
• If a graph can be drawn without crossing

edges, it is planar.

3

2

6

5

4
1

Planar3

2

6

5
4

1

Planar

3

2

6

5

1

Planar(!)

3

2
6

5

1

=

Planarity
• If a graph can be drawn without crossing

edges, it is planar.

3

2

6

5

1
Not

planar

3

2

6

5

4
1

Planar3

2

6

5
4

1

Planar

3

2

6

5

1

Planar(!)

3

2
6

5

1

=

3

2

4

1

3

2

4

1

4

2

5

1

3

6

Detecting Planarity

• There’s a (non-obvious) theorem that says a
graph is planar if and only if it does not
contain* one of these as a subgraph:

K5
K3,3

A subgraph of a graph is a graph whose vertex and edge
sets are subsets of the larger graph’s.

• Elements of the edge subset can only contain nodes in the vertex subset.

*The definition of
“contain” is slightly more
general than having one
of these directly as a
subgraph.

Detecting DAGs
• A DAG, or Directed Acyclic Graph is a…

graph that is directed and acyclic.

A

B

C

D

E

F

Is this a DAG?
• How do we tell if a directed graph is acyclic?

• If a node has indegree 0, it can’t be part of a cycle.

• Edges coming from that node also can’t be part of a cycle.

A

B

C

D

E

F

Is this a DAG?
• How do we tell if a directed graph is acyclic?

• If a node has indegree 0, it can’t be part of a cycle.

• Edges coming from that node also can’t be part of a cycle.

Algorithm:

 while there is a node with indegree 0:

 delete the node and all edges coming from it

 if the graph is empty, the original graph was a DAG

A

B

C

D

E

F

Is this a DAG?
• How do we tell if a directed graph is acyclic?

• If a node has indegree 0, it can’t be part of a cycle.

• Edges coming from that node also can’t be part of a cycle.

Algorithm:

 while there is a node with indegree 0:

 delete the node and all edges coming from it

 if the graph is empty, the original graph was a DAG

B

C

D

E

F

Is this a DAG?
• How do we tell if a directed graph is acyclic?

• If a node has indegree 0, it can’t be part of a cycle.

• Edges coming from that node also can’t be part of a cycle.

Algorithm:

 while there is a node with indegree 0:

 delete the node and all edges coming from it

 if the graph is empty, the original graph was a DAG

C

D

E

F

Is this a DAG?
• How do we tell if a directed graph is acyclic?

• If a node has indegree 0, it can’t be part of a cycle.

• Edges coming from that node also can’t be part of a cycle.

Algorithm:

 while there is a node with indegree 0:

 delete the node and all edges coming from it

 if the graph is empty, the original graph was a DAG

D

E

F

Is this a DAG?
• How do we tell if a directed graph is acyclic?

• If a node has indegree 0, it can’t be part of a cycle.

• Edges coming from that node also can’t be part of a cycle.

Algorithm:

 while there is a node with indegree 0:

 delete the node and all edges coming from it

 if the graph is empty, the original graph was a DAG

E

FF

Is this a DAG?
• How do we tell if a directed graph is acyclic?

• If a node has indegree 0, it can’t be part of a cycle.

• Edges coming from that node also can’t be part of a cycle.

Algorithm:

 while there is a node with indegree 0:

 delete the node and all edges coming from it

 if the graph is empty, the original graph was a DAG

F

Topological Sort
Topological sort (or toposort):

 i = 0

 while there is a node with indegree 0:

 delete* the node and all edges coming from it

 label* the deleted node i

 increment i

 if the graph is empty, the original graph was a DAG

Topological Sort
Topological sort (or toposort):

 i = 0

 while there is a node with indegree 0:

 delete* the node and all edges coming from it

 label* the deleted node i

 increment i

 if the graph is empty, the original graph was a DAG

*This is pseudocode: we probably don’t want to actually modify the graph.
We’ll need to store extra data with nodes and edges, and possibly overlay
additional data structures to make it efficient.

Topological Sort
• Here are the labels we applied to the example graph:

• Property: all edges go from a lower-numbered node
to a higher-numbered node.

• Useful for dependency resolution, job scheduling,

• Ordering is not necessarily unique: could have
chosen from among multiple nodes with indegree 0.

1

2

3

4

5

6

Tensorflow Computation Graphs

slide credit: O’Reilly Media, Python Machine Learning

Word Problems!

