Announcements
Announcements

• Quiz today as usual.
Announcements

- Quiz today as usual.
- Midterm grades are out - see announcement
Announcements

- Quiz today as usual.
- Midterm grades are out - see announcement
- A2 grades are out - nice work!
Goals

• See a proof of correctness of Dijkstra's algorithm

• Answer any questions you have about implementation / A4.

• Get some practice running Dijkstra on paper
Dijkstra’s Shortest Paths: Cartoon

settled frontier unexplored

Before:

During:

After:
Dijkstra’s Shortest Paths: Cartoon

Before:

During:

After:
Dijkstra’s Shortest Paths: Cartoon

Before:

During:

After:
Dijkstra’s Shortest Paths: Cartoon

Before:

During:

After:
Dijkstra’s Shortest Paths: Cartoon

Before:

During:

After:

settled frontier unexplored

unreachable nodes
Dijkstra’s Shortest Paths: Intuition

- Intuition: explore nodes kinda like BFS.
- There are three kinds of nodes:
 - **Settled** - nodes for which we know the actual shortest path.
 - **Frontier** - nodes that have been visited but we don’t necessarily have their actual shortest path
 - **Unexplored** - all other nodes.
- Each node n keeps track of $n.d$, the length of the shortest known known path from start.
- We may discover a shorter path to a **frontier** node than the one we’ve found already - if so, update $n.d$.
Dijkstra’s Shortest Paths: High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:

move the node \(f \) with smallest \(d \) from \(F \) to \(S \)
For each neighbor \(w \) of \(f \):

if we’ve never seen \(w \) before:
set its path length
add it to frontier

else if the path to \(w \) via \(f \) is shorter:
update \(w \)’s shortest path length

\[
\text{settled}
\]
Proof of Correctness

• Dijkstra’s algorithm is greedy: it makes a sequence of locally optimal moves, which results in the globally optimal solution.

 • Most algorithms don’t work like this - need to prove that it results in the global optimum.

• Specifically: It is not obvious that there cannot still be a shorter path to the Frontier node with smallest d-value.
Proof Sketch

1. State a loop invariant.

2. Prove that if that invariant is maintained, then the algorithm is correct.

3. Prove that the algorithm maintains the invariant.
Proof of Correctness: Invariant

The while loop in Dijkstra’s algorithm maintains a 3-part invariant:

1. For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path.

3. All edges leaving S go to F (or: no edges from S to Unexplored)
Proof of Correctness:

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), $f.d$ is the shortest-path distance from v to f.

Proof: Show that any other path from v to f has length $\geq f.d$.

Case 1: if v is in F, then S is empty and $v.d = 0$, which is trivially the shortest distance from v to v.

```
S = { }; F = {v}; v.d = 0;
while (F ≠ { }) {
    f = node in F with min d value;
    Remove f from F, add it to S;
    for each neighbor w of f {
        if (w not in S or F) {
            w.d = f.d + weight(f, w);
            add w to F;
        } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
        }
    }
}
```
Proof of Correctness: Theorem

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), $f.d$ is the shortest-path distance from v to f.

Proof: Show that any other path from v to f has length $\geq f.d$.

Case 2: v is in S. Part 2 of the invariant says:

- $f.d$ is the length of the shortest path from v to f containing all settled nodes except f, and $f.d$ is the length of such a path.

Proof of Correctness:

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from v to f has length $\geq f.d$.

Case 2: v is in S. Part 2 of the invariant says:

\begin{itemize}
 \item f.d is the length of the shortest path from v to f containing all settled nodes except f, and f.d is the length of such a path.
\end{itemize}

Any other v-f path must either be longer or go through another frontier node g then arrive at f:
Proof of Correctness:

Theorem: For a node \(f \) in the Frontier with minimum \(d \) value (over all nodes in the Frontier), \(f.d \) is the shortest-path distance from \(v \) to \(f \).

Proof: Show that any other path from \(v \) to \(f \) has length \(\geq f.d \)

\[
S = \{ \}; \quad F = \{v\}; \quad v.d = 0; \\
\text{while } (F \neq \{\}) \{ \\
\quad f = \text{node in } F \text{ with min } d \text{ value;} \\
\quad \text{Remove } f \text{ from } F, \text{ add it to } S; \\
\quad \text{for each neighbor } w \text{ of } f \{ \\
\qquad \text{if } (w \text{ not in } S \text{ or } F) \{ \\
\qquad\quad w.d = f.d + \text{weight}(f, w); \\
\qquad\quad \text{add } w \text{ to } F; \\
\qquad\} \text{ else if } (f.d + \text{weight}(f,w) < w.d) \{ \\
\qquad\quad w.d = f.d + \text{weight}(f,w); \\
\qquad\} \\
\} \\
\text{Case 2: } v \text{ is in } S. \text{ Part 2 of the invariant says:} \\
\quad \bullet \ f.d \text{ is the length of the shortest path from } v \text{ to } f \text{ containing all settled nodes except } f, \text{ and } f.d \text{ is the length of such a path.} \\
\]

Any other \(v \)-\(f \) path must either be longer or go through another frontier node \(g \) then arrive at \(f \):

![Diagram](image-url)
Proof of Correctness:

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from v to f has length \(\geq f.d \)

\[S = \{ \}; \quad F = \{v\}; \quad v.d = 0; \]

\[\text{while } (F \neq \{\}) \{ \]

\[f = \text{node in } F \text{ with min d value}; \]

Remove f from F, add it to S;

for each neighbor w of f {

if (w not in S or F) {

w.d = f.d + \text{weight}(f, w);

add w to F;

}

else if (f.d + \text{weight}(f, w) < w.d) {

w.d = f.d + \text{weight}(f, w);

}

\}

Case 2: v is in S. Part 2 of the invariant says:

- f.d is the length of the shortest path from v to f containing all settled nodes except f, and f.d is the length of such a path.

Any other v-f path must either be longer or go through another frontier node g then arrive at f:

\[d.f \leq d.g, \]

so that path cannot be shorter.
Proof of Correctness: Invariant Maintenance

S = { }; F = {v}; v.d = 0;
while (F ≠ { }) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

1. For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path

3. All edges leaving S go to F (or: no edges from S to Unexplored)
Proof of Correctness: Invariant Maintenance

\[S = \{ \}; \quad F = \{v\}; \quad v.d = 0; \]

while \(F \neq \{\} \) {
 \(f = \) node in \(F \) with min \(d \) value;
 Remove \(f \) from \(F \), add it to \(S \);
 for each neighbor \(w \) of \(f \) {
 if \(w \) not in \(S \) or \(F \) {
 \(w.d = f.d + \text{weight}(f, w) \);
 add \(w \) to \(F \);
 }
 else if \(f.d + \text{weight}(f,w) < w.d \) {
 \(w.d = f.d + \text{weight}(f,w) \);
 }
 }
}

At initialization:
1. \(S \) is empty; trivially true.
2. \(v.d = 0 \), which is the shortest path.
3. \(S \) is empty, so no edges leave it.

1. For a Settled node \(s \), a shortest path from \(v \) to \(s \) contains only settled nodes and \(s.d \) is length of shortest \(v \rightarrow s \) path.
2. For a Frontier node \(f \), at least one \(v \rightarrow f \) path contains only settled nodes (except perhaps for \(f \)) and \(f.d \) is the length of the shortest such path.
3. All edges leaving \(S \) go to \(F \) (or: no edges from \(S \) to Unexplored).
Proof of Correctness: Invariant Maintenance

1. For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path.

3. All edges leaving S go to F (or: no edges from S to Unexplored).

S = {}; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

At each iteration:
1. Theorem says f.d is the shortest path, so it can safely move to S
2. Updating w.d maintains Part 2 of the invariant.
3. Each neighbor is either already in F or gets moved there.
Proof of Correctness: Invariant Maintenance

1. For a Settled node \(s \), a shortest path from \(v \) to \(s \) contains only settled nodes and \(s.d \) is length of shortest \(v \to s \) path.

2. For a Frontier node \(f \), at least one \(v \to f \) path contains only settled nodes (except perhaps for \(f \)) and \(f.d \) is the length of the shortest such path.

3. All edges leaving \(S \) go to \(F \) (or: no edges from \(S \) to Unexplored).

\[
S = \{ \}; F = \{v\}; \ v.d = 0;
\]

while \((F \neq \{\})\) {

\[f = \text{node in } F \text{ with min } d \text{ value;}\]

Remove \(f \) from \(F \), add it to \(S \);

for each neighbor \(w \) of \(f \) {

\[\text{if } (w \text{ not in } S \text{ or } F) \{\]
\[w.d = f.d + \text{weight}(f, w);\]
\[\text{add } w \text{ to } F;\]
\}

\[\text{else if } (f.d + \text{weight}(f, w) < w.d) \{\]
\[w.d = f.d + \text{weight}(f, w);\]
\}

At each iteration:

1. Theorem says \(f.d \) is the shortest path, so it can safely move to \(S \)
2. Updating \(w.d \) maintains Part 2 of the invariant.
3. Each neighbor is either already in \(F \) or gets moved there.

\[
S = \{ \}; F = \{v\}; \ v.d = 0;
\]
Questions?
Dijkstra Practice

Draw the following directed, weighted graph:

\[V = \{1, 2, 3, 4, 5, 6\} \]
\[E = \{ \]
\[(1, 2): 7 \]
\[(1, 3): 9 \]
\[(1, 6): 14 \]
\[(2, 3): 10 \]
\[(2, 4): 15 \]
\[(3, 4): 11 \]
\[(3, 6): 2 \]
\[(4, 5): 6 \]
\[(6, 5): 9 \]
\[\} \]
Dijkstra Practice

\[V = \{1, 2, 3, 4, 5, 6\} \]

\[E = \{ \]
\[(1, 2): 7 \]
\[(1, 3): 9 \]
\[(1, 6): 14 \]
\[(2, 3): 10 \]
\[(2, 4): 15 \]
\[(3, 4): 11 \]
\[(3, 6): 2 \]
\[(4, 5): 6 \]
\[(6, 5): 9 \]
\[\} \]
Run Dijkstra's algorithm on the graph starting at node 1.

F: 4 3 6 4 5
S: 1 2 3 6 4 5

<table>
<thead>
<tr>
<th>n</th>
<th>d</th>
<th>bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>null</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>2 3</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>2 3</td>
</tr>
</tbody>
</table>
Run Dijkstra's algorithm on the graph starting at node 1.

F: 1 2 3 4 5
S: 1 2 3 6 4 5

<table>
<thead>
<tr>
<th>n</th>
<th>d</th>
<th>bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>null</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>3</td>
</tr>
</tbody>
</table>