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Dijkstra’s Algorithm:

Proof of Correctness; Practice
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• Midterm grades are out - see 
announcement

• A2 grades are out - nice work!



Goals
• See a proof of correctness of Dijkstra's 

algorithm


• Answer any questions you have about 
implementation / A4.


• Get some practice running Dijkstra on paper
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Dĳkstra’s Shortest Paths: 
Intuition

• Intuition: explore nodes kinda like BFS.

• There are three kinds of nodes:

• Settled - nodes for which we know the actual shortest 

path.

• Frontier - nodes that have been visited but we don’t 

necessarily have their actual shortest path

• Unexplored - all other nodes.


• Each node n keeps track of n.d, the length of the 
shortest known known path from start.


• We may discover a shorter path to a frontier node than 
the one we’ve found already - if so, update n.d.



Dĳkstra’s Shortest Paths: 
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
  move the node f with smallest d from F to S
  For each neighbor w of f:
    if we’ve never seen w before:
      set its path length
      add it to frontier
  else if the path to w via f is shorter:
      update w’s shortest path length

s f w…
f.d

s f w…
u…

w.d = u.d + wt(u,w)
f.d + wt(f,w)

settled
u.d + wt(u,w)

wt(f,w)



Proof of Correctness
• Dijkstra’s algorithm is greedy: it makes a 

sequence of locally optimal moves, which 
results in the globally optimal solution.


• Most algorithms don’t work like this - need to prove 
that it results in the global optimum.


• Specifically: It is not obvious that there 
cannot still be a shorter path to the Frontier 
node with smallest d-value.



Proof Sketch
1. State a loop invariant.


2. Prove that if that invariant is maintained, 
then the algorithm is correct.


3. Prove that the algorithm maintains the 
invariant.



Proof of Correctness: 
Invariant

The while loop in Dijkstra’s algorithm maintains a 3-
part invariant:


1. For a Settled node s, a shortest path from v to s contains only 
settled nodes and s.d is length of shortest v -> s path. 

2. For a Frontier node f, at least one v -> f path contains only 
settled nodes (except perhaps for f) and f.d is the length of the 
shortest such path 

3. All edges leaving S go to F (or: no edges from S to Unexplored)

fv

Frontier 
F

Settled 
S

Unexplored

f

fv s



Proof of Correctness: 
Theorem

Theorem: For a node f in the Frontier 
with minimum d value (over all nodes in 
the Frontier), f.d is the shortest-path 
distance from v to f. 
Proof: Show that any other path from v 
to if has length >= f.d

S = { }; F = {v};  v.d = 0;
while  (F ≠ {})  {
    f = node in F with min d value;
         Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
      }
   }
}

Case 1: if v is in F, then S is empty and v.d = 0, which is trivially the 
shortest distance from v to v.

S
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• f.d is the length of the shortest path from v to f containing all 

settled nodes except f, and f.d is the length of such a path.
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frontier node g then arrive at f:
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Theorem: For a node f in the Frontier 
with minimum d value (over all nodes in 
the Frontier), f.d is the shortest-path 
distance from v to f. 
Proof: Show that any other path from v 
to if has length >= f.d
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Case 2: v is in S. Part 2 of the invariant says:

• f.d is the length of the shortest path from v to f containing all 

settled nodes except f, and f.d is the length of such a path.

Any other v-f path must either be longer or go through another 
frontier node g then arrive at f:

d.f <= d.g, 

so that path cannot be shorter

fv g



Proof of Correctness: 
Invariant Maintenance

1. For a Settled node s, a shortest path 
from v to s contains only settled nodes 
and s.d is length of shortest v -> s path.


2. For a Frontier node f, at least one v -> f 
path contains only settled nodes (except 
perhaps for f) and f.d is the length of the 
shortest such path


3. All edges leaving S go to F (or: no edges 
from S to Unexplored)

S = { }; F = {v};  v.d = 0;
while  (F ≠ {})  {
    f = node in F with min d value;
         Remove f from F, add it to S;
   for each neighbor w of f {
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from v to s contains only settled nodes 
and s.d is length of shortest v -> s path.


2. For a Frontier node f, at least one v -> f 
path contains only settled nodes (except 
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shortest such path
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S = { }; F = {v};  v.d = 0;
while  (F ≠ {})  {
    f = node in F with min d value;
         Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
      }
   }
}

At initialization: 

1. S is empty; trivially true.

2. v.d = 0, which is the shortest path.

3. S is empty, so no edges leave it.

s
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At each iteration:

1. Theorem says f.d is the shortest path, so it can safely move to S

2. Updating w.d maintains Part 2 of the invariant.

3. Each neighbor is either already in F or gets moved there.
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Questions?



Dĳkstra Practice
Draw the following directed, weighted graph:  
 
V = {1, 2, 3, 4, 5, 6} 
E = {


(1, 2): 7

(1, 3): 9

(1, 6): 14

(2, 3): 10

(2, 4): 15

(3, 4): 11

(3, 6): 2

(4, 5): 6

(6, 5): 9


}
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Run Dijkstra's algorithm on the graph starting at node 1.

S:
F:

n d bp
1

2

3

4

5

6
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