
CSCI 241
Lecture 22

Dijkstra’s Algorithm:

Proof of Correctness; Practice

Announcements

Announcements
• Quiz today as usual.

Announcements
• Quiz today as usual.

• Midterm grades are out - see
announcement

Announcements
• Quiz today as usual.

• Midterm grades are out - see
announcement

• A2 grades are out - nice work!

Goals
• See a proof of correctness of Dijkstra's

algorithm

• Answer any questions you have about
implementation / A4.

• Get some practice running Dijkstra on paper

Dĳkstra’s Shortest Paths:
Cartoon

settled frontier unexplored

Before:

During:

After:

Dĳkstra’s Shortest Paths:
Cartoon

settled frontier unexplored

Before:

During:

After:

S

Dĳkstra’s Shortest Paths:
Cartoon

settled frontier unexplored

Before:

During:

After:

S

S

Dĳkstra’s Shortest Paths:
Cartoon

settled frontier unexplored

Before:

During:

After:

S

S

S

Dĳkstra’s Shortest Paths:
Cartoon

settled frontier unexplored

Before:

During:

After:

S

S

S

unreachable nodes

Dĳkstra’s Shortest Paths:
Intuition

• Intuition: explore nodes kinda like BFS.

• There are three kinds of nodes:

• Settled - nodes for which we know the actual shortest

path.

• Frontier - nodes that have been visited but we don’t

necessarily have their actual shortest path

• Unexplored - all other nodes.

• Each node n keeps track of n.d, the length of the
shortest known known path from start.

• We may discover a shorter path to a frontier node than
the one we’ve found already - if so, update n.d.

Dĳkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

s f w…
f.d

s f w…
u…

w.d = u.d + wt(u,w)
f.d + wt(f,w)

settled
u.d + wt(u,w)

wt(f,w)

Proof of Correctness
• Dijkstra’s algorithm is greedy: it makes a

sequence of locally optimal moves, which
results in the globally optimal solution.

• Most algorithms don’t work like this - need to prove
that it results in the global optimum.

• Specifically: It is not obvious that there
cannot still be a shorter path to the Frontier
node with smallest d-value.

Proof Sketch
1. State a loop invariant.

2. Prove that if that invariant is maintained,
then the algorithm is correct.

3. Prove that the algorithm maintains the
invariant.

Proof of Correctness:
Invariant

The while loop in Dijkstra’s algorithm maintains a 3-
part invariant:

1. For a Settled node s, a shortest path from v to s contains only
settled nodes and s.d is length of shortest v -> s path. 

2. For a Frontier node f, at least one v -> f path contains only
settled nodes (except perhaps for f) and f.d is the length of the
shortest such path 

3. All edges leaving S go to F (or: no edges from S to Unexplored)

fv

Frontier
F

Settled
S

Unexplored

f

fv s

Proof of Correctness:
Theorem

Theorem: For a node f in the Frontier
with minimum d value (over all nodes in
the Frontier), f.d is the shortest-path
distance from v to f. 
Proof: Show that any other path from v
to if has length >= f.d

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 1: if v is in F, then S is empty and v.d = 0, which is trivially the
shortest distance from v to v.

S

Proof of Correctness:
Theorem

Theorem: For a node f in the Frontier
with minimum d value (over all nodes in
the Frontier), f.d is the shortest-path
distance from v to f. 
Proof: Show that any other path from v
to if has length >= f.d

fv

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 2: v is in S. Part 2 of the invariant says:

• f.d is the length of the shortest path from v to f containing all

settled nodes except f, and f.d is the length of such a path.

Proof of Correctness:
Theorem

Theorem: For a node f in the Frontier
with minimum d value (over all nodes in
the Frontier), f.d is the shortest-path
distance from v to f. 
Proof: Show that any other path from v
to if has length >= f.d

fv

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 2: v is in S. Part 2 of the invariant says:

• f.d is the length of the shortest path from v to f containing all

settled nodes except f, and f.d is the length of such a path.

Any other v-f path must either be longer or go through another
frontier node g then arrive at f:

Proof of Correctness:
Theorem

Theorem: For a node f in the Frontier
with minimum d value (over all nodes in
the Frontier), f.d is the shortest-path
distance from v to f. 
Proof: Show that any other path from v
to if has length >= f.d

fv

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 2: v is in S. Part 2 of the invariant says:

• f.d is the length of the shortest path from v to f containing all

settled nodes except f, and f.d is the length of such a path.

Any other v-f path must either be longer or go through another
frontier node g then arrive at f: fv g

Proof of Correctness:
Theorem

Theorem: For a node f in the Frontier
with minimum d value (over all nodes in
the Frontier), f.d is the shortest-path
distance from v to f. 
Proof: Show that any other path from v
to if has length >= f.d

fv

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 2: v is in S. Part 2 of the invariant says:

• f.d is the length of the shortest path from v to f containing all

settled nodes except f, and f.d is the length of such a path.

Any other v-f path must either be longer or go through another
frontier node g then arrive at f:

d.f <= d.g,

so that path cannot be shorter

fv g

Proof of Correctness:
Invariant Maintenance

1. For a Settled node s, a shortest path
from v to s contains only settled nodes
and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f
path contains only settled nodes (except
perhaps for f) and f.d is the length of the
shortest such path

3. All edges leaving S go to F (or: no edges
from S to Unexplored)

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Proof of Correctness:
Invariant Maintenance

1. For a Settled node s, a shortest path
from v to s contains only settled nodes
and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f
path contains only settled nodes (except
perhaps for f) and f.d is the length of the
shortest such path

3. All edges leaving S go to F (or: no edges
from S to Unexplored)

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

At initialization:

1. S is empty; trivially true.

2. v.d = 0, which is the shortest path.

3. S is empty, so no edges leave it.

s

Proof of Correctness:
Invariant Maintenance

1. For a Settled node s, a shortest path
from v to s contains only settled nodes
and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f
path contains only settled nodes (except
perhaps for f) and f.d is the length of the
shortest such path

3. All edges leaving S go to F (or: no edges
from S to Unexplored)

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

At each iteration:

1. Theorem says f.d is the shortest path, so it can safely move to S

2. Updating w.d maintains Part 2 of the invariant.

3. Each neighbor is either already in F or gets moved there.

Proof of Correctness:
Invariant Maintenance

1. For a Settled node s, a shortest path
from v to s contains only settled nodes
and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f
path contains only settled nodes (except
perhaps for f) and f.d is the length of the
shortest such path

3. All edges leaving S go to F (or: no edges
from S to Unexplored)

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

At each iteration:

1. Theorem says f.d is the shortest path, so it can safely move to S

2. Updating w.d maintains Part 2 of the invariant.

3. Each neighbor is either already in F or gets moved there.

Questions?

Dĳkstra Practice
Draw the following directed, weighted graph:  
 
V = {1, 2, 3, 4, 5, 6} 
E = {

(1, 2): 7

(1, 3): 9

(1, 6): 14

(2, 3): 10

(2, 4): 15

(3, 4): 11

(3, 6): 2

(4, 5): 6

(6, 5): 9

}

Dĳkstra Practice

1

2

6

3
4

5

14

7

9
10

15

11

69

2

V = {1, 2, 3, 4, 5, 6}  
E = {

(1, 2): 7

(1, 3): 9

(1, 6): 14

(2, 3): 10

(2, 4): 15

(3, 4): 11

(3, 6): 2

(4, 5): 6

(6, 5): 9

}

Dĳkstra Practice

1

2

6

3
4

5

14

7

9
10

15

11

69

2

Run Dijkstra's algorithm on the graph starting at node 1.

S:
F:

n d bp
1

2

3

4

5

6

Dĳkstra Practice

1

2

6

3
4

5

14

7

9
10

15

11

69

2

Run Dijkstra's algorithm on the graph starting at node 1.

S:
F:

n d bp
1

2

3

4

5

6

