CSCI 241

Lecture 22
Dijkstra’s Algorithm:
Proof of Correctness; Practice

Announcements

Announcements

e Quiz today as usual.

Announcements

e Quiz today as usual.

 Midterm grades are out - see
announcement

Announcements

e Quiz today as usual.

 Midterm grades are out - see
announcement

e A2 grades are out - nice work!

Goals

e See a proof of correctness of Dijkstra's
algorithm

 Answer any guestions you have about
implementation / A4.

e Get some practice running Dijkstra on paper

Dijkstra’s Shortest Paths:
Cartoon

settled frontier unexplored

Before:

During:

After:

Dijkstra’s Shortest Paths:
Cartoon

settled frontier unexplored

Before: Q

During:

After:

Dijkstra’s Shortest Paths:
Cartoon

settled frontier unexplored

Before: Q

After:

Dijkstra’s Shortest Paths:
Cartoon

settled frontier unexplored

~ (d5 %)) (%

Dijkstra’s Shortest Paths:
Cartoon

settled frontier unexplored

- @ Q @
unrea odes

Dijkstra’s Shortest Paths:
Intuition

e |ntuition: explore nodes kinda like BFS.
e There are three kinds of nodes:

o Settled - nodes for which we know the actual shortest
path.

e Frontier - nodes that have been visited but we don’t
necessarily have their actual shortest path

e Unexplored - all other nodes.

e Each node n keeps track of n.d, the length of the
shortest known known path from start.

e We may discover a shorter path to a frontier node than
the one we’ve found already - if so, update n.d.

Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
if we’ve never seen w before:

f.d
set its path length e o o Q
add it to frontier wi(f,w)

—else 1if the path to w via f is shorter:
(update w’'s shortest path Tength y—

setfied " @)
o o

Proof of Correctness

* Dijkstra’s algorithm is greedy: it makes a
sequence of locally optimal moves, which
results in the globally optimal solution.

e Most algorithms don’t work like this - need to prove
that it results in the global optimum.

e Specifically: It is not obvious that there
cannot still be a shorter path to the Frontier
node with smallest d-value.

Proof Sketch

. State a loop invariant.

Prove that if that invariant is maintained,
then the algorithm is correct.

. Prove that the algorithm maintains the
invariant.

Proof of Correctness:

s ¥ Invariant

B.E

The while loop in Dijkstra’s algorithm maintains a 3-
part invariant: Wy @5

Sk Node

1. For a Settled node s, a shortest path from@to s contains only
settled nodes and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f path contains only
settled nodes (except perhaps for f) and f.d is the length of the

shortest such path
| TSN

3. All edges leaving S go to F (or: no edges from S to Unexplored)

Proof of Correctness:
S={}F={v} vd=0;
MRS Theorem

f = node in F with min d value; Theorem: For a node f in the Frontier

Remove f from F, add it to S: with minimum d value (over all nodes in
for each neighbor w of f { the Frontier), f.d is the shortest-path
if (wnotin S or F) { distance from v to f.
wd = f.d+ weight(f, w); Proof: Show that any other path from v
add w to F: toW has length >=f.d

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);

h Case 1:if visin F, then S is empty and v.d = 0, which is trivially the
shortest distance from v to v.

(D) (=N

Proof of Correctness:
S={}F={v} vd=0;
MRS Theorem

f = node in F with min d value; Theorem: For a node f in the Frontier

Remove f from F, add it to S: With minimum d value (over all nodes in
for each neighbor w of f { the Frontier), f.d is the shortest-path
if (wnotin S or F) { distance from v to f.
w.d = f.d+ weight(f, w); Proof: Show that any other path from v
add w to F; to if has length >= f.d

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);
} Case 2: visin S. Part 2 of the invariant says:
} e f.dis the length of the shortest path from v to f containing all
} settled nodes except f, and f.d is the length of such a path.

/\/\/\

Proof of Correctness:
S={}F={v} vd=0;
MRS Theorem

f = node in F with min d value; Theorem: For a node f in the Frontier

Remove f from F, add it to S;: With minimum d value (over all nodes in
for each neighbor w of f { the Frontier), f.d is the shortest-path
if (wnotin S or F) { distance from v to f.
w.d = f.d+ weight(f, w); Proof: Show that any other path from v
add w to F; to if has length >= f.d

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);
} Case 2: visin S. Part 2 of the invariant says:
} e f.dis the length of the shortest path from v to f containing all
} settled nodes except f, and f.d is the length of such a path.
Any other v-f path must either be longer or go through another
frontier node g then arrive at f:

Proof of Correctness:
S={}F={v} vd=0;
MRS Theorem

f = node in F with min d value; Theorem: For a node f in the Frontier

Remove f from F, add it to S;: With minimum d value (over all nodes in
for each neighbor w of f { the Frontier), f.d is the shortest-path
if (wnotin S or F) { distance from v to f.
w.d = f.d+ weight(f, w); Proof: Show that any other path from v
add w to F; to if has length >= f.d

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);
} Case 2: visin S. Part 2 of the invariant says:
} e f.dis the length of the shortest path from v to f containing all
} settled nodes except f, and f.d is the length of such a path.
Any other v-f path must either be longer or go through another
frontier node g then arrive at f:

Proof of Correctness:
S={xF={vivd=0: Thaorem

while (F={}) {
f = node in F with min d value; | Theorem: For a node f in the Frontier

Remove f from F, add it to S with minimum d value (over all nodes in

for each neighbor w of f { the Frontier), f.d is the shortest-path

if (w not in S or F) { distance from v to f.
w.d = f.d + weight(f, w); Prqof: Show that any other path from v
add w to F: to if has length >= f.d

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f;w);
} Case 2: v is in S\Part 2 pf the invariant says:
} e f.dis the length of the shortest path from v to f containing all
} settled nodes except f, and f.d is the length of such a path.
Any other v-f path must either be longer or go through another
frontier node g then arrive at f:

d.f <=d.g,
so that path cannot be shorter ¥V

Proof of Correctness:
Invariant Maintenance

B e . Al 1. For a Settled node s, a shortest path
S - 1 F={v} vd=0; from v to s contains only settled nodes
while (F#{}) { and s.d is length of shortest v -> s path.

f = node in F with min d value;
2. For a Frontier node f, at least one v -> f

Remove f from F, add it to S; b contal v sottled nod t

for each neighbor w of f { path contains only settled nodes (excep
. . perhaps for f) and f.d is the length of the
it (w notin S or F) { shortest such path

w.d = f.d + weight(f, w);
add w to F; 3.Tedge3 leaving S go to F (or: no edges

) else if (f.d+weight(f,w) < w.d) { from S to Unexplored)
w.d = f.d+weight(f,w);
h

¥
¥

Proof of Correctness:
Invariant Maintenance

T o , A, / 1. For a Settled node s, a shortest path
S={}F={vi; vd=0; from v to s contains only settled nodes

while (F = {}) { and s.d is length of shortest v -> s path.
f = node in F with min d value; /
2

Remove f from F, add it to S;
for each neighbor w of f {

For a Frontier node f, at least one v -> f
path contains only settled nodes (except
perhaps for f) and f.d is the length of the

if (w notin S or F) { shortest such path
w.d = f.d+ weight(f, w);
add w to F: 3. All edges leaving S go to F (or: no edges

} else if (f.d+weight(f,w) < w.d) { rom S to Unexplored)

w.d = f.d+weight(f,w); S
At initialization:

1. Sis empty; trivially true.

}
) .
} Ol @%‘9 2. v.d =0, which is the shortest path.
3. Sis empty, so no edges leave it.

Proof of Correctness:
Invariant Maintenance

1. For a Settled node s, a shortest path

S=1hF=1v} vd=0; from v to s contains only settled nodes

while (F = {}) { and s.d is length of shortest v -> s path.
f = node in F wi ' ;

2. For a Frontier node f, at least one v -> f
path contains only settled nodes (except
perhaps for f) and f.d is the length of the
shortest such path

— wd = + weight(f, w);
add w to F; 3. All edges leaving S go to F (or: no edges
} else if (f.d+weight(f,w) < w.d) { from S to Unexplored)
—w.d ()d+weight(f,w);

b At each iteration:
1. Theorem says f.d is the shortest path, so it can safely move to S
2. Updatin—gntains Part 2 of the invariant.
3. Each neighbor is either already in F or gets moved there.

Proof of Correctness:
Invariant Maintenance

1. For a Settled node s, a shortest path

S=1hF=1v} vd=0; from v to s contains only settled nodes

while (F={}) { and s.d is length of shortest v -> s path.
f = node in F with min d value;
Remove f from F. add it to S: 2. For a Frontier node f, at least one v -> f

path contains only settled nodes (except
perhaps for f) and f.d is the length of the
shortest such path

for each neighbor w of f {

if (wnotin S or F) {
w.d = f.d + weight(f, w);
add w to F; 3. All edges leaving S go to F (or: no edges

} else if (f.d+weight(f,w) < w.d) { from S to Unexplored)

w.d = £ d+weight(f.w): @U%

b At each iteration:
1. Theorem says f.d is the shortest path, so it can safely move to S
2. Updating w.d maintains Part 2 of the invariant.
3. Each neighbor is either already in F or gets moved there.

Questions?

Dijkstra Practice

Draw the following directed, weighted graph:

1,2,3,4,5,6) Dylesta (1)

m <

SRBORPIIT
QoL LN
OON— O

— 010 b

Dijkstra Practice

©
Te)
<
)
ol t oW
- MO T T T ANO O
T NnonSsTob o

~ ~ ~ ~ ~ -~ ~ ~ -~

Dijkstra Practice

Run Dijkstra's algorithm on the graph starting at node 1.

Dijkstra Practice

Run Dijkstra's algorithm on the graph starting at node 1.

