

CSCI 241

Lecture 22 Dijkstra's Algorithm: Proof of Correctness; Practice

• Quiz today as usual.

- Quiz today as usual.
- Midterm grades are out see announcement

- Quiz today as usual.
- Midterm grades are out see announcement
- A2 grades are out nice work!

Goals

- See a proof of correctness of Dijkstra's algorithm
- Answer any questions you have about implementation / A4.
- Get some practice running Dijkstra on paper

Dijkstra's Shortest Paths: **Cartoon** settled frontier unexplored

Before:

During:

After:

During:

After:

After:

Dijkstra's Shortest Paths: Intuition

- Intuition: explore nodes kinda like BFS.
- There are three kinds of nodes:
	- Settled nodes for which we know the actual shortest path.
	- Frontier nodes that have been visited but we don't necessarily have their actual shortest path
	- Unexplored all other nodes.
- Each node n keeps track of $n.d$, the length of the shortest known known path from start.
- We may discover a shorter path to a frontier node than the one we've found already - if so, update $n.d.$

Dijkstra's Shortest Paths: High-Level Algorithm

- Dijkstra's algorithm is **greedy**: it makes a sequence of *locally* optimal moves, which results in the *globally* optimal solution.
	- Most algorithms don't work like this need to prove that it results in the global optimum.
- Specifically: It is not obvious that there cannot still be a shorter path to the Frontier node with smallest d-value.

Proof Sketch

- 1. State a loop invariant.
- 2. Prove that **if** that invariant is maintained, **then** the algorithm is correct.
- 3. Prove that the algorithm maintains the invariant.

The while loop in Dijkstra's algorithm maintains a 3 part invariant: v s f

- 1. For a Settled node s, a shortest path from \sqrt{v} to s contains only settled nodes and s.d is length of shortest $v \rightarrow s$ path.
- 2. For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path

v f

 $SHa+node$

3. All edges leaving S go to F (or: no edges from S to Unexplored)

 $S = \{ \}$; $F = \{v\}$; $v.d = 0$; **while** $(F \neq \{\}) \leq$

}

}

}

Theorem

 $f = node$ in F with min d value; Remove f from F, add it to S; **for** each neighbor w of $f \}$ **if** (w not in S or F) $\{$ $w.d = f.d + weight(f, w);$ add w to F; $\}$ **else if** (f.d+weight(f,w) < w.d) {

```
w.d = f.d + weight(f,w);
```
Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from y to \ast has length $>=$ f.d

Case 1: if y is in \mathbb{F} , then S is empty and v.d = 0, which is trivially the shortest distance from v to v.

 $S = \{ \}$; F = $\{v\}$; v.d = 0; **while** $(F \neq \{\}) \leq$

add w to F;

}

}

Theorem

 $f = node$ in F with min d value; Remove f from F, add it to S; **for each neighbor w of f** $\{$ **if** (w not in S or F) $\{$ $w.d = f.d + weight(f, w);$

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from v to if has length $>=$ f.d

- $\}$ **else if** (f.d+weight(f,w) < w.d) { $w.d = f.d + weight(f,w);$
- } **Case 2:** v is in S. Part 2 of the invariant says:
	- **•** f.d is the length of the shortest path from v to f containing all settled nodes except f, and f.d is the length of such a path.

 $S = \{ \}$; $F = \{v\}$; $v.d = 0$; **while** $(F \neq \{\}) \leq$

}

}

Theorem

 $f = node$ in F with min d value; Remove f from F, add it to S; **for each neighbor w of f** $\{$ **if** (w not in S or F) $\{$

 $w.d = f.d + weight(f, w);$ add w to F;

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from v to if has length $>=$ f.d

- $\}$ **else if** (f.d+weight(f,w) < w.d) { $w.d = f.d + weight(f,w);$
- } **Case 2:** v is in S. Part 2 of the invariant says:
	- **•** f.d is the length of the shortest path from v to f containing all settled nodes except f, and f.d is the length of such a path. Any other v-f path must either be longer or go through another frontier node g then arrive at f:

 $S = \{ \}$; F = $\{v\}$; v.d = 0; **while** $(F \neq \{\}) \leq$

}

}

Theorem

 $f = node$ in F with min d value; Remove f from F, add it to S; **for each neighbor w of f** $\{$ **if** (w not in S or F) $\{$

 $w.d = f.d + weight(f, w);$ add w to F;

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from v to if has length $>=$ f.d

v \bullet f

- $\}$ **else if** (f.d+weight(f,w) < w.d) { $w.d = f.d + weight(f,w);$
- } **Case 2:** v is in S. Part 2 of the invariant says:
	- **•** f.d is the length of the shortest path from v to f containing all settled nodes except f, and f.d is the length of such a path. Any other v-f path must either be longer or go through another frontier node q then arrive at f:

 $S = \{ \}$; F = $\{v\}$; v.d = 0; **while** $(F \neq \{\}) \leq$

}

}

Theorem

 $f = node$ in F with min d value; Remove f from F, add it to S; **for each neighbor w of f** $\{$ **if** (w not in S or F) $\{$

 $w.d = f.d + weight(f, w);$ add w to F;

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from v to if has length $>=$ f.d

- $\}$ **else if** (f.d+weight(f,w) < w.d) {
	- $w.d = f.d + weight(f,w);$
- **Case 2:** v is in S. Part 2 of the invariant says:
	- **•** f.d is the length of the shortest path from v to f containing all settled nodes except f, and f.d is the length of such a path. Any other v-f path must either be longer or go through another frontier node g then arrive at f:

 $d.f \leq d.g,$ so that path cannot be shorter

 $S = \{ \}$; F = $\{v\}$; v.d = 0; **while** $(F \neq \{\}) \leq$ $f = node$ in F with min d value; Remove f from F, add it to S; **for** each neighbor w of $f \}$ **if** (w not in S or F) $\{$ $w.d = f.d + weight(f, w);$ add w to F; $\}$ **else if** (f.d+weight(f,w) < w.d) { $w.d = f.d + weight(f,w);$

}

}

}

- 1. For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest $v \rightarrow s$ path.
- 2. For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path

 $3.$ All edges leaving S go to F (or: no edges from S to Unexplored)

 $S = \{ \}$; $F = \{v\}$; $v.d = 0$; **while** $(F \neq \{\}) \leq$

}

}

}

 $f = node$ in F with min d value; Remove f from F, add it to S; **for** each neighbor w of $f \}$

if (w not in S or F) $\{$ $w.d = f.d + weight(f, w);$ add w to F;

} **else if** $(f.d+weight(f,w) < w.d$ } { $w.d = f.d + weight(f,w);$

2. For a Frontier node f, at least one $v \rightarrow f$ path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path

All edges leaving S go to F (or: no edges from S to Unexplored)

At initialization:

1. S is empty; trivially true.

2. $v.d = 0$, which is the shortest path.

3. S is empty, so no edges leave it.

 $S = \{ \}$; F = $\{v\}$; v.d = 0; **while** $(F \neq \{\}) \leq$ $f = node$ in F with min d value; Remove f from F, add it to S ; for each neighbor w of f? **if** (w not in S or F) $\{$ \Rightarrow w.d = (f)d + weight(f, w); add w to F; } **else if** $(f_d + weight(f_w) < w.d)$ { \Rightarrow w.d = $(f/d + \text{weight}(f, w));$ }

- 1. For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest $v \rightarrow s$ path.
- 2. For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path
- 3. All edges leaving S go to F (or: no edges from S to Unexplored)

At each iteration:

}

}

- Theorem says f.d is the shortest path, so it can safely move to S
- 2. Updating w.d maintains Part 2 of the invariant.
- 3. Each neighbor is either already in F or gets moved there.

 $S = \{ \}$; F = $\{v\}$; v.d = 0; **while** $(F \neq \{\}) \leq$ $f = node$ in F with min d value; Remove f from F, add it to S; **for** each neighbor w of $f \}$ **if** (w not in S or F) $\{$ $w.d = f.d + weight(f, w);$ add w to F; $\}$ **else if** (f.d+weight(f,w) < w.d) {

- $w.d = f.d + weight(f,w);$
- } At each iteration:

}

}

- 1. For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest $v \rightarrow s$ path.
- 2. For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path
- 3. All edges leaving S go to F (or: no edges from S to Unexplored)

- Theorem says f.d is the shortest path, so it can safely move to S
- 2. Updating w.d maintains Part 2 of the invariant.
- 3. Each neighbor is either already in F or gets moved there.

Questions?

Draw the following directed, weighted graph:

 $Dijksbra(\mathbf{1})$ $V = \{1, 2, 3, 4, 5, 6\}$ $E = \{$ $(1, 2)$: 7 $(1, 3)$: 9 $(1, 6)$: 14 (2, 3): 10 (2, 4): 15 (3, 4): 11 (3, 6): 2 (4, 5): 6 (6, 5): 9 }

Run Dijkstra's algorithm on the graph starting at node 1.

S: F:

Run Dijkstra's algorithm on the graph starting at node 1.

F:
$$
\pi
$$
 2 3 6 4 5
S: 123645

