

Lecture 21 Dijkstra's Single-Source Shortest Paths Algorithm

• Lab 8 is out.

- Lab 8 is out.
- A4 is out
 - I'll post full slides for Dijkstra even if we don't get through all of them today.
 - I'll also post two sample graphs for you to run the algorithm on.

- Lab 8 is out.
- A4 is out
 - I'll post full slides for Dijkstra even if we don't get through all of them today.
 - I'll also post two sample graphs for you to run the algorithm on.
- Quiz 5 is graded, video is posted.

Goals

- Know how to determine whether a graph is connected
- Know the definition of connected components.
- Know what a weighted graph is.
- Understand the intuition behind Dijkstra's shortest paths algorithm.
- Be able to execute Dijkstra's algorithm manually on a graph.
- Be prepared to implement Dijkstra's algorithm efficiently.
- Know how to augment the algorithm to keep backpointers in order to reconstruct the sequence of nodes in a shortest path.

Graph Terminology

- A graph is connected if there is a path between every pair of nodes.
 - A directed graph is strongly connected if there is a directed path between all pairs of nodes.
 - A directed graph is weakly connected if the graph becomes connected when all edges are converted to undirected edges.
- A graph can have multiple connected components: subsets of the vertices and edges that are connected.

connected

Not weakly

connected

Weighted Graphs

- Like a normal graph, but edges have weights.
- Formally: a graph (V,E) with an accompanying weight function w: E -> \mathbb{R}
 - may be directed or undirected.
- Informally: label edges with their weights
- Representation:

6

5

6

В

- adjacency list store weight of (u,v) with v the node in u's list
- adjacency matrix store weight in matrix entry for (u,v)

Paths in Weighted Graphs

- The length (or weight) of a path in a weighted graph is the sum of the edge weights along that path.
- **ABCD**: What's the length of the shortest path from 3 to 6?
 - A. 7
 - B. 8
 - C. 9
 - D. 10

- Perform a breadth-first search (that's it!)
- BFS visits nodes in order of "hop distance", or path length!
- BFS(1):

- Perform a breadth-first search (that's it!)
- BFS visits nodes in order of "hop distance", or path length!

- Perform a breadth-first search (that's it!)
- BFS visits nodes in order of "hop distance", or path length!

- Perform a breadth-first search (that's it!)
- BFS visits nodes in order of "hop distance", or path length!

- Perform a breadth-first search (that's it!)
- BFS visits nodes in order of "hop distance", or path length!

Dijkstra's Shortest Paths: Subpaths

• Fact: subpaths of shortest paths are shortest paths

- Example: if the shortest path from u to w goes through v, then
 - the part of that path from u to v is the shortest path from u to v.
 - if there were some better path u..v, that would also be part of a better way to get from u to w.

Dijkstra's Shortest Paths: Subpaths

- Fact: subpaths of shortest paths are shortest paths
- Consequence: a candidate shortest path from start node s to some node v's neighbor w is the shortest path from to v + the edge weight from v to w.

shortest path u..v = v.d

$$u \rightarrow \cdots \rightarrow v \xrightarrow{wt(v,w)} w$$

Dijkstra's Shortest Paths: Intuition

- Intuition: explore nodes like BFS, but in order of path length instead of number of hops.
- There are three kinds of nodes:
 - Settled nodes for which we know the actual shortest path.
 - Frontier nodes that have been visited but we don't necessarily have their actual shortest path
 - Unexplored all other nodes.
- Each node n keeps track of n.d, the length of the shortest known known path from start.
- We may discover a shorter path to a frontier node than the one we've found already - if so, update n.d.

Dijkstra's Shortest Paths: Cartoon settled frontier unexplored

Before:

During:

After:

During:

After:

After:

Initialize Settled to empty Initialize Frontier to the start node While the frontier isn't empty: move the node f with smallest d from F to S For each neighbor w of f: if we've never seen w before: set its path length add it to frontier else if the path to w via f is shorter: update w's shortest path length

Initialize Settled to empty Initialize Frontier to the start node While the frontier isn't empty: move the node f with smallest d from F to S For each neighbor w of f: if we've never seen w before: f.d set its path length S add it to frontier else if the path to w via f is shorter: update w's shortest path length

Best known distances:

Node	d
0	?
1	?
2	?
3	?
4	?

Initialize Settled to empty Initialize Frontier to the start node While the frontier isn't empty: move the node f with smallest d from F to S For each neighbor w of f: if we've never seen w before: set its path length to f.d + wt(f,w) add w to the frontier else if the path to w via f is shorter: update w's shortest path length

Settled set:

Frontier set:

Best known distances: Node d 0 ? 1 ? 2 ? 3 ? 4 0

Initialize Settled to empty Initialize Frontier to the start node While the frontier isn't empty: move the node f with smallest d from F to S For each neighbor w of f: if we've never seen w before: set its path length to f.d + wt(f,w) add w to the frontier else if the path to w via f is shorter: update w's shortest path length

Settled set: {}

Frontier set: {4}

Best				
known				
distances:				
Node	d			
0	?			
1	?			
2	?			
3	?			
4	0			

Settled set: {4}

Frontier set: {}

Best		
-	n	Initialize Settled to empty
know		Initialize Frontier to the start node
distar	nces:	While the frontier isn't empty:
Node	d	move the node f with smallest d from F to S
0	2	For each neighbor w of f: f: 4
U	_	if we've never seen w before: w:0
1	?	<pre>set its path length to f.d + wt(f,w)</pre>
2	?	add w to the frontier
3	?	else if the path to w via f is shorter:
		update w's shortest path length
4 0 Settled set: {4} Frontier set: {0} 4 0 2 0 4 2 4 2 3 3 1 3		
		<pre>shortest-paths(4)</pre>

Best				
known				
distances:				
Node	d			
0	2			
1	?			
2	?			
3	?			
4	0			

Initialize Settled to empty Initialize Frontier to the start node While the frontier isn't empty: move the node f with smallest d from F to S For each neighbor w of f: f: 0 if we've never seen w before: set its path length to f.d + wt(f,w) add w to the frontier else if the path to w via f is shorter: update w's shortest path length

Settled set: {4, 0}

Frontier set: {}

Best		
Initialize		Initialize Settled to empty
know	'n	Initialize Frontier to the start node
dista	nces:	While the frontier isn't empty:
Node	d	move the node f with smallest d from F to S
		For each neighbor w of f: f: 0
0	2	if we've never seen w before: w:1
1	5	set its path length to f.d + wt(f,w)
2	?	add w to the frontier
3	?	else if the path to w via f is shorter:
		update w's shortest path length
4	0	
Settled set: {4, 0}		
Fron	tier set	:{1} shortest-paths(4)

Best		Initialize Settled to empty		
know	n	Initialize Frontier to the start node		
distar	nces:	While the frontier isn't empty:		
Node	d	move the node f with smallest d from F to S		
0	2	For each neighbor w of f: f: 0		
		if we've never seen w before: w:2		
1	5	<pre>set its path length to f.d + wt(f,w)</pre>		
2	6	add w to the frontier		
3	?	else if the path to w via f is shorter:		
		update w's shortest path length		
4	0			
		$: \{4, 0\}$		
Frontier set: {1, 2}				
		<pre>shortest-paths(4)</pre>		

Best known			
distances:			
Node	d		
0	2		
1	5		
2	6		
3	8		
4	0		

Initialize Settled to empty Initialize Frontier to the start node While the frontier isn't empty: move the node f with smallest d from F to S For each neighbor w of f: f: 1 if we've never seen w before: f: 1 if we've never seen w before: set its path length to f.d + wt(f,w) add w to the frontier else if the path to w via f is shorter: update w's shortest path length

Settled set: {4, 0, 1}

Frontier set: {2}

Best		Initialize Settled to empty			
know	n	Initialize Frontier to the start node			
distar	ices:	While the frontier isn't empty:			
Node	d	move the node f with smallest d from F to S			
0	2	For each neighbor w of f: f: 1			
		if we've never seen w before: w: 3			
1	5	<pre>set its path length to f.d + wt(f,w)</pre>			
2	6	add w to the frontier			
3	8	else if the path to w via f is shorter:			
		update w's shortest path length			
4	0				
Settled set: $\{4, 0, 1\}$ Frontier set: $\{2, 3\}$					
		<pre>shortest-paths(4)</pre>			

Best known			
distances:			
Node	d		
0	2		
1	5		
2	6		
3	8		
4	0		

Settled set: {4, 0, 1, 2}

Frontier set: {3}

distances: While	Initia Initia While
Node d	
0 2 FO:	r i:
1 5	
2 6	
3 7	e.
4 0	

Settled set: {4, 0, 1, 2, 3}

Frontier set: {} Empty => done!

shortest-paths(4)

4

 $S = \{ \}; F = \{v\}; v.d = 0;$ Initialize Settled to empty Initialize Frontier to the start node while $(F \neq \{\})$ { f = node in F with min d value; Remove f from F, add it to S; **for** each neighbor w of f { if (w not in S or F) { w.d = f.d + weight(f, w);add w to F; } else if (f.d+weight(f,w) < w.d) { w.d = f.d + weight(f,w);}

```
S = \{ \}; F = \{v\}; v.d = 0;
                                  Initialize Settled to empty
                                  Initialize Frontier to the start node
while (F \neq \{\}) {
  f = node in F with min d value;
                                   While the frontier isn't empty:
                                     move node f with smallest d
  Remove f from F, add it to S;
                                      from F to S
  for each neighbor w of f {
    if (w not in S or F) {
       w.d = f.d + weight(f, w);
       add w to F;
    } else if (f.d+weight(f,w) < w.d) {
       w.d = f.d + weight(f,w);
   }
```

```
S = \{ \}; F = \{v\}; v.d = 0;
                                 Initialize Settled to empty
                                 Initialize Frontier to the start node
while (F \neq \{\}) {
  f = node in F with min d value;
                                  While the frontier isn't empty:
                                    move node f with smallest d
  Remove f from F, add it to S;
                                      from F to S
  for each neighbor w of f {
                                 For each neighbor w of f:
                                   if we've never seen w before:
    if (w not in S or F) {
                                      set its path length
       w.d = f.d + weight(f, w);
                                      add it to frontier
       add w to F;
    } else if (f.d+weight(f,w) < w.d) {
       w.d = f.d + weight(f,w);
```

```
S = \{ \}; F = \{v\}; v.d = 0;
                                 Initialize Settled to empty
                                 Initialize Frontier to the start node
while (F \neq \{\}) {
  f = node in F with min d value;
                                  While the frontier isn't empty:
                                    move node f with smallest d
  Remove f from F, add it to S;
                                     from F to S
  for each neighbor w of f {
                                 For each neighbor w of f:
                                   if we've never seen w before:
    if (w not in S or F) {
                                     set its path length
       w.d = f.d + weight(f, w);
                                     add it to frontier
       add w to F;
   } else if (f.d+weight(f,w) < w.d) {
                                   else if path to w via f is shorter:
       w.d = f.d + weight(f,w);
                                       update w's shortest path length
   }
```

What if we want to know the shortest path?

 $S = \{ \}; F = \{v\}; v.d = 0;$ while $(F \neq \{\})$ {

f = node in F with min d value; Remove f from F, add it to S; **for** each neighbor w of f { **if** (w not in S or F) {

w.d = f.d + weight(f, w);add w to F;

w.d = f.d + weight(f,w);

 At termination: for each reachable node n, n.d stores the **length** of the shortest path from v to n.

 We didn't keep track of } else if (f.d+weight(f,w) < w.d) { how to get from v to n!

What if we want to know the shortest path?

 $S = \{ \}; F = \{v\}; v.d = 0; v.bp = null;$ while $(F \neq \{\})$ { f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f { **if** (w not in S or F) { w.d = f.d + weight(f, w);w.bp = f; add w to F; } else if (f.d+weight(f,w) < w.d) { Strategy: maintain a</pre> w.d = f.d + weight(f,w);w.bp = f

Each node could store the full path, but that would be expensive to keep updated.

backpointer at each node pointing to the previous node in the shortest path.

What if we want to know the shortest path? Example

 $S = \{ \}; F = \{v\}; v.d = 0; v.bp = null;$ while $(F \neq \{\})$ { f = node in F with min d value; Remove f from F, add it to S; **for** each neighbor w of f { **if** (w not in S or F) { w.d = f.d + weight(f, w);w.bp = f; add w to F; } else if (f.d+weight(f,w) < w.d) { Strategy: maintain a</pre> w.d = f.d + weight(f,w);w.bp = f

backpointer at each node pointing to the previous node in the shortest path.

 $S = \{ \}; F = \{v\}; v.d = 0; v.bp = null;$ while $(F \neq \{\})$ { f = node in F with min d value; Remove f from F, add it to S; **for** each neighbor w of f { **if** (w not in S or F) { w.d = f.d + weight(f, w);w.bp = f; add w to F; } else if (f.d+weight(f,w) < w.d) { w.d = f.d + weight(f,w);w.bp = f}

S:

F:

Node	d	bp
0		
1		
2		
3		
4		

Questions?

The next slide very important.

- S = { }; F = {v}; v.d = 0; v.bp = null; 1. while $(F \neq \{\})$ {
 - f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f \langle
 - for each neighbor w of f {
 if (w not in S on E) (
 - if (w not in S or F) {
 w.d = f.d + weight(f, w);
 - w.bp = f;
 - add w to F;

```
} else if (f.d+weight(f,w) < w.d) {
    w.d = f.d+weight(f,w);
    w.bp = f</pre>
```

Store Frontier in a min-heap priority queue with d-values as priorities.

- 2. To efficiently iterate over neighbors, use an adjacency list graph representation.
- 3. Could store w.d and w.bp in Node class; in A4, we use a HashMap<Node,PathData>
- 4. No need to explicitly store Settled or Unexplored sets: a node is in S or F iff it is in the map.

- S = { }; F = {v}; v.d = 0; v.bp = null; 1. while $(F \neq \{\})$ {
 - f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f { if (w not in S or F) { w.d = f.d + weight(f, w);
 - w.bp = f; add w to F;
 - } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f</pre>

. Store Frontier in a min-heap priority queue with d-values as priorities.

- 2. To efficiently iterate over neighbors, use an adjacency list graph representation.
- 3. Could store w.d and w.bp in Node class; in A4, we use a HashMap<Node,PathData>
- 4. No need to explicitly store Settled or Unexplored sets: a node is in S or F iff it is in the map.

- S = { }; F = {v}; v.d = 0; v.bp = null; 1. while $(F \neq \{\})$ {
 - f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f (
 - for each neighbor w of f {
 - if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;

```
} else if (f.d+weight(f,w) < w.d) {
    w.d = f.d+weight(f,w);
    w.bp = f</pre>
```

Store Frontier in a min-heap priority queue with d-values as priorities.

- 2. To efficiently iterate over neighbors, use an adjacency list graph representation.
- 3. Could store w.d and w.bp in Node class; in A4, we use a HashMap<Node,PathData>
- 4. No need to explicitly store Settled or Unexplored sets: a node is in S or F iff it is in the map.

- S = { }; F = {v}; v.d = 0; v.bp = null; 1. while $(F \neq \{\})$ {
 - f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f { if (w not in S or F) { w.d = f.d + weight(f, w); w.bp = f; add w to F;

```
add w to r,
} else if (f.d+weight(f,w) < w.d) {
    w.d = f.d+weight(f,w);
    w.bp = f</pre>
```

. Store Frontier in a min-heap priority queue with d-values as priorities.

- 2. To efficiently iterate over neighbors, use an adjacency list graph representation.
- 3. Could store w.d and w.bp in Node class; in A4, we use a HashMap<Node,PathData>
- 4. No need to explicitly store Settled or Unexplored sets: a node is in S or F iff it is in the map.

- S = { }; F = {v}; v.d = 0; v.bp = null; 1. while $(F \neq \{\})$ {
 - f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f { if (w not in S or F) { w.d = f.d + weight(f, w); w.bp = f; add w to F;

```
} else if (f.d+weight(f,w) < w.d) {
    w.d = f.d+weight(f,w);
    w.bp = f</pre>
```

. Store Frontier in a min-heap priority queue with d-values as priorities.

- 2. To efficiently iterate over neighbors, use an adjacency list graph representation.
- 3. Could store w.d and w.bp in Node class; in A4, we use a HashMap<Node,PathData>
- 4. No need to explicitly store Settled or Unexplored sets: a node is in S or F iff it is in the map.

 $S = \{ \}; F = \{v\}; v.d = 0; v.bp = null; 4. No need to explicitly store$ Settled or Unexplored sets: while $(F \neq \{\})$ { f = node in F with min d value; w is in S or F \leq it is in the map. Remove f from F, add it to S; The only time we need to check **for** each neighbor w of f { membership in S is here. if (w not in S or F) { w.d = f.d + weight(f, w);w.bp = f; add w to F; } else if (f.d+weight(f,w) < w.d) { w.d = f.d + weight(f,w);w.bp = f

 $S = \{ \}; F = \{v\}; v.d = 0; v.bp = null; 4. No need to explicitly store$ Settled or Unexplored sets: while $(F \neq \{\})$ { f = node in F with min d value; w is in S or F \leq it is in the map. Remove f from F, add it to S; The only time we need to check for each neighbor w of f { membership in S is here. if (w not in S or F) { If w is not in S or F, w.d = f.d + weight(f, w);it must be in Unexplored. w.bp = f; add w to F; } else if (f.d+weight(f,w) < w.d) { w.d = f.d + weight(f,w);w.bp = f

$S = \{ \}; F = \{v\}; v.d = 0; v.bp = nu$	11 ; 4	No need to explicitly store				
while $(F \neq \{\})$ {	S	Settled or Unexplored sets:				
f = node in F with min d value;	,	w is in S or $F \ll$ it is in the map.				
Remove f from F, add it to S;	Tho	only time we need to check				
		The only time we need to check membership in S is here . If w is not in S or F, it must be in Unexplored.				
				add w to F;		therefore,
				<pre>} else if (f.d+weight(f,w) < w.d)</pre>	{	we haven't found a path to it.
				w.d = f.d + weight(f,w);		
w.bp = f						
}						

S = { }; F = {v}; v.d = 0; v.bp = null while (F \neq {}) {	4. No need to explicitly store Settled or Unexplored sets:		
f = node in F with min d value;	w is in S or F \leq it is in the map.		
	The only time we need to check membership in S is here . If w is not in S or F,		
w.d = f.d + weight(f, w);			
w.bp = f;	it must be in Unexplored.		
add w to F;	therefore,		
<pre>} else if (f.d+weight(f,w) < w.d) {</pre>	we haven't found a path to it.		
w.d = f.d+weight(f,w);	therefore,		
w.bp = f	it has no d or bp yet.		

while $(F \neq \{\})$ { f = node in F with min d value;	ull ; 4. No need to explicitly store Settled or Unexplored sets: w is in S or F <=> it is in the map.		
		The only time we need to check membership in S is here .	
w.d = $f.d + weight(f, w);$ w.bp = f;	If w is not in S or F, it must be in Unexplored.		
add w to F; } else if (f.d+weight(f,w) < w.d) <		herefore, ve haven't found a path to it .	
w.d = f.d+weight(f,w); w.bp = f		therefore, it has no d or bp yet.	
<pre>} } }</pre>		therefore, it isn't in the map!	

- Dijkstra's algorithm is greedy: it makes a sequence of *locally* optimal moves, which results in the *globally* optimal solution.
 - Most algorithms don't work like this need to prove that it results in the global optimum.
- Specifically: It is not obvious that there cannot still be a shorter path to the Frontier node with smallest d-value.

Proof of Correctness: Frontier Unexplored Invariant

Settled

S

f

The while loop in Dijkstra's algorithm maintains a 3part invariant:

 For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.

- For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path
- 3. All edges leaving S go to F (or: no edges from S to Unexplored)

 $S = \{ \}; F = \{v\}; v.d = 0;$ while $(F \neq \{\})$ {

Theorem f = node in F with min d value; Remove f from F, add it to S;

for each neighbor w of f {

if (w not in S or F) { w.d = f.d + weight(f, w);add w to F;

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from v to if has length >= f.d

```
} else if (f.d+weight(f,w) < w.d) {
   w.d = f.d + weight(f,w);
```

Case 1: if v is in F, then S is empty and v.d = 0, which is trivially the shortest distance from v to v.

S = { }; F = {v}; v.d = 0; while (F \neq {}) {

Theorem

f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f {

- if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
- **Theorem**: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from v to if has length >= f.d

- } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);</pre>
- **Case 2:** v is in S. Part 2 of the invariant says:
 - f.d is the length of the shortest path from v to f containing all settled nodes except f, and f.d is the length of such a path.

S = { }; F = {v}; v.d = 0; while (F \neq {}) {

Theorem

f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f {

- if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
- **Theorem**: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from v to if has length >= f.d

- } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);</pre>
- **Case 2:** v is in S. Part 2 of the invariant says:
 - f.d is the length of the shortest path from v to f containing all settled nodes except f, and f.d is the length of such a path.
 Any other v-f path must either be longer or go through another frontier node g then arrive at f:

S = { }; F = {v}; v.d = 0; while (F \neq {}) {

Theorem

f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f {

- if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
- **Theorem**: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from v to if has length >= f.d

- } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);</pre>
- **Case 2:** v is in S. Part 2 of the invariant says:
 - f.d is the length of the shortest path from v to f containing all settled nodes except f, and f.d is the length of such a path.
 Any other v-f path must either be longer or go through another frontier node g then arrive at f:

S = { }; F = {v}; v.d = 0; while (F \neq {}) {

f = node in F with min d value; Remove f from F, add it to S; for each neighbor w of f {

if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;

Theorem

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from v to if has length >= f.d

- } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);</pre>
- **Case 2:** v is in S. Part 2 of the invariant says:
 - f.d is the length of the shortest path from v to f containing all settled nodes except f, and f.d is the length of such a path.
 Any other v-f path must either be longer or go through another frontier node g then arrive at f:

d.f <= d.g,

so that path cannot be shorter

Proof of Correctness: Invariant Maintenance

 $S = \{ \}; F = \{v\}; v.d = 0;$ while $(F \neq \{\}) \{$ f = node in F with min d value; Remove f from F, add it to S;
for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 }
else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
}

- For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.
- For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path
- 3. All edges leaving S go to F (or: no edges from S to Unexplored)

Proof of Correctness: Invariant Maintenance

 $S = \{ \}; F = \{v\}; v.d = 0;$ while $(F \neq \{\})$ { f = node in F with min d value; Remove f from F, add it to S; **for** each neighbor w of f { if (w not in S or F) { w.d = f.d + weight(f, w);add w to F; } else if (f.d+weight(f,w) < w.d) { w.d = f.d + weight(f,w);

- For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.
- For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path
- 3. All edges leaving S go to F (or: no edges from S to Unexplored)

At initialization:

- 1. S is empty; trivially true.
- 2. v.d = 0, which is the shortest path.
- 3. S is empty, so no edges leave it.

Proof of Correctness: Invariant Maintenance

 $S = \{ \}; F = \{v\}; v.d = 0;$ while $(F \neq \{\}) \{$ f = node in F with min d value;Remove f from F, add it to S;
for each neighbor w of f {
if (w not in S or F) {
w.d = f.d + weight(f, w);
add w to F;
} else if (f.d+weight(f,w) < w.d) {

w.d = f.d+weight(f,w);

For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.

- For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path
- 3. All edges leaving S go to F (or: no edges from S to Unexplored)

- At each iteration:
 - 1. Theorem says f.d is the shortest path, so it can safely move to S
 - 2. Updating w.d maintains Part 2 of the invariant.
 - 3. Each neighbor is either already in F or gets moved there.