CSCI 241

Lecture 21
Dijkstra’s Single-Source Shortest Paths Algorithm
Announcements

• Lab 8 is out.
Announcements

• Lab 8 is out.

• A4 is out

 • I’ll post full slides for Dijkstra even if we don't get through all of them today.

 • I'll also post two sample graphs for you to run the algorithm on.
Announcements

• Lab 8 is out.

• A4 is out
 • I’ll post full slides for Dijkstra even if we don't get through all of them today.
 • I'll also post two sample graphs for you to run the algorithm on.

• Quiz 5 is graded, video is posted.
Goals

• Know how to determine whether a graph is connected
• Know the definition of connected components.
• Know what a weighted graph is.
• Understand the intuition behind Dijkstra’s shortest paths algorithm.
• Be able to execute Dijkstra’s algorithm manually on a graph.
• Be prepared to implement Dijkstra's algorithm efficiently.
• Know how to augment the algorithm to keep backpointers in order to reconstruct the sequence of nodes in a shortest path.
Graph Terminology

• A graph is **connected** if there is a path between every pair of nodes.

• A directed graph is **strongly connected** if there is a directed path between all pairs of nodes.

• A directed graph is **weakly connected** if the graph becomes connected when all edges are converted to undirected edges.

• A graph can have multiple **connected components**: subsets of the vertices and edges that are connected.
Weighted Graphs

• Like a normal graph, but edges have weights.

• Formally: a graph \((V,E)\) with an accompanying weight function \(w: E \rightarrow \mathbb{R}\)
 • may be directed or undirected.

• Informally: label edges with their weights

• Representation:
 • adjacency list - store weight of \((u,v)\) with \(v\) the node in \(u\)'s list
 • adjacency matrix - store weight in matrix entry for \((u,v)\)
Paths in Weighted Graphs

• The length (or weight) of a path in a weighted graph is the sum of the edge weights along that path.

• **ABCD**: What’s the length of the shortest path from 3 to 6?
 - A. 7
 - B. 8
 - C. 9
 - D. 10
Computing Shortest Paths in Unweighted Graphs

- Perform a breadth-first search (that’s it!)
- BFS visits nodes in order of “hop distance”, or path length!
- BFS(1):

```
1 -- 2
|    |
|    |
3 -- 5
|    |
|    |
4 -- 6
|    |
|    |
```
Computing Shortest Paths in Unweighted Graphs

• Perform a breadth-first search (that’s it!)
• BFS visits nodes in order of “hop distance”, or path length!

• BFS(1):

![Graph](image.png)
Computing Shortest Paths in Unweighted Graphs

- Perform a breadth-first search (that’s it!)
- BFS visits nodes in order of “hop distance”, or path length!
- BFS(1):

```
  0  1
 1  2
 3  4
 5  6
```
Computing Shortest Paths in Unweighted Graphs

- Perform a breadth-first search (that’s it!)
- BFS visits nodes in order of “hop distance”, or path length!
- BFS(1):

```
0 1 2 3 4 5 6
1 2 3 4 5 6
2 3 4 5 6
1 6
```
Computing Shortest Paths in Unweighted Graphs

- Perform a breadth-first search (that’s it!)
- BFS visits nodes in order of “hop distance”, or path length!
- BFS(1):

![Graph diagram]

0 → 1 → 2
0 → 3
0 → 5 → 4
0 → 6
Computing Shortest Paths in Weighted Graphs

BFS doesn’t visit nodes in order of shortest path length:

(edge weights)
(shortest path length from node 1)
Computing Shortest Paths in Weighted Graphs

BFS doesn’t visit nodes in order of shortest path length:

(edge weights)
(shortest path length from node 1)
Computing Shortest Paths in Weighted Graphs

BFS doesn’t visit nodes in order of shortest path length:

(edge weights)
(shortest path length from node 1)
Computing Shortest Paths in Weighted Graphs

BFS doesn’t visit nodes in order of shortest path length:

(edge weights)
(shortest path length from node 1)
Computing Shortest Paths in Weighted Graphs

BFS doesn’t visit nodes in order of shortest path length:

(edge weights)
(shortest path length from node 1)
Dijkstra’s Shortest Paths: Subpaths

• Fact: **subpaths** of shortest paths are shortest paths

 ![Graph](image)

 \(u \rightarrow \ldots \rightarrow v \rightarrow \ldots \rightarrow w \)

• Example: if the shortest path from \(u \) to \(w \) goes through \(v \), then

 • the part of that path from \(u \) to \(v \) is the shortest path from \(u \) to \(v \).

 • if there were some better path \(u \ldots v \), that would also be part of a better way to get from \(u \) to \(w \).
Dijkstra’s Shortest Paths: Subpaths

• Fact: **subpaths** of shortest paths are shortest paths

• Consequence: a **candidate** shortest path from start node s to some node v’s neighbor w is the shortest path from to v + the edge weight from v to w.

![Diagram](image)

shortest path $u \ldots v = v.d$ to v wt(v,w) to w.
Dijkstra’s Shortest Paths: Intuition

- Intuition: explore nodes like BFS, but in order of path length instead of number of hops.
- There are three kinds of nodes:
 - **Settled** - nodes for which we know the actual shortest path.
 - **Frontier** - nodes that have been visited but we don’t necessarily have their actual shortest path.
 - **Unexplored** - all other nodes.
- Each node \(n\) keeps track of \(n.d\), the length of the shortest known known path from start.
- We may discover a shorter path to a frontier node than the one we’ve found already - if so, update \(n.d\).
Dijkstra’s Shortest Paths: Cartoon

settled frontier unexplored

Before:

During:

After:
Dijkstra’s Shortest Paths: Cartoon

Before:

During:

After:
Dijkstra's Shortest Paths: Cartoon

Before:

During:

After:
Dijkstra’s Shortest Paths: Cartoon

Before:

During:

After:
Dijkstra’s Shortest Paths: High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length
Dijkstra’s Shortest Paths: High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node \(f \) with smallest \(d \) from \(F \) to \(S \)
 For each neighbor \(w \) of \(f \):
 if we’ve never seen \(w \) before:
 set its path length
 add it to frontier
 else if the path to \(w \) via \(f \) is shorter:
 update \(w \)’s shortest path length
Dijkstra’s Shortest Paths: High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node \(f \) with smallest \(d \) from \(F \) to \(S \)
 For each neighbor \(w \) of \(f \):
 if we’ve never seen \(w \) before:
 set its path length
 add it to frontier
 else if the path to \(w \) via \(f \) is shorter:
 update \(w \)’s shortest path length
Dijkstra’s Shortest Paths: High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

settled

$w.d = u.d + \text{wt}(u,w)$
$f.d + \text{wt}(f,w)$
Dijkstra’s Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>?</td>
</tr>
</tbody>
</table>

Settled set:

Frontier set:

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length
Dijkstra’s Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:

move the node f with smallest d from F to S

For each neighbor w of f:

if we’ve never seen w before:
set its path length to f.d + wt(f,w)
add w to the frontier

else if the path to w via f is shorter:
update w’s shortest path length

Settled set: {}
Frontier set: {4}
Dijkstra’s Shortest Paths: Execution

Settled set: {4}

Frontier set: {}

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)
Dijkstra’s Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Settled set: {4}

Frontier set: {0}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node \(f \) with smallest \(d \) from \(F \) to \(S \)
 For each neighbor \(w \) of \(f \):
 if we’ve never seen \(w \) before:
 set its path length to \(f.d + w(f,w) \)
 add \(w \) to the frontier
 else if the path to \(w \) via \(f \) is shorter:
 update \(w \)’s shortest path length

shortest-paths(4)
Dijkstra’s Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:

- Move the node f with smallest d from F to S
- For each neighbor w of f:
 - If we’ve never seen w before:
 - Set its path length to f.d + wt(f,w)
 - Add w to the frontier
 - Else if the path to w via f is shorter:
 - Update w’s shortest path length

Settled set: {4, 0}
Frontier set: {}
Dijkstra’s Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f, w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

Settled set: \{4, 0\}
Frontier set: \{1\}
Dijkstra’s Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:

- move the node \(f \) with smallest \(d \) from \(F \) to \(S \)

For each neighbor \(w \) of \(f \):

- if we’ve never seen \(w \) before:
 - set its path length to \(f.d + wt(f,w) \)
 - add \(w \) to the frontier
- else if the path to \(w \) via \(f \) is shorter:
 - update \(w \)’s shortest path length

Settled set: \{4, 0\}

Frontier set: \{1, 2\}
Dijkstra's Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:

1. Move the node f with smallest d from F to S
2. For each neighbor w of f:
 - If we’ve never seen w before:
 - Set its path length to $f.d + wt(f,w)$
 - Add w to the frontier
 - Else if the path to w via f is shorter:
 - Update w’s shortest path length

Settled set: {4, 0, 1}
Frontier set: {2}

shortest-paths(4)
Dijkstra’s Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Settled set: \{4, 0, 1\}

Frontier set: \{2, 3\}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node \(f \) with smallest \(d \) from \(F \) to \(S \)
 For each neighbor \(w \) of \(f \):
 if we’ve never seen \(w \) before:
 set its path length to \(f.d + wt(f,w) \)
 add \(w \) to the frontier
 else if the path to \(w \) via \(f \) is shorter:
 update \(w \)’s shortest path length

shortest-paths(4)
Dijkstra’s Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Settled set: {4, 0, 1, 2}

Frontier set: {3}

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:
- move the node f with smallest d from F to S
- For each neighbor w of f:
 - if we’ve never seen w before:
 - set its path length to f.d + wt(f,w)
 - add w to the frontier
 - else if the path to w via f is shorter:
 - update w’s shortest path length

shortest-paths(4)
Dijkstra’s Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

Settled set: {4, 0, 1, 2}
Frontier set: {3}

2.d + wt(2,3) < 3.d
7 < 8

shortest-paths(4)
Dijkstra’s Shortest Paths: Execution

Best known distances:

<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:

- **move the node f with smallest d from F to S**
- For each neighbor w of f:
 - if we’ve never seen w before:
 - set its path length to f.d + wt(f,w)
 - add w to the frontier
 - else if the path to w via f is shorter:
 - update w’s shortest path length

Settled set: \{4, 0, 1, 2, 3\}

Frontier set: \{\} Empty => done!
Dijkstra’s Shortest Paths: Pseudocode

\[S = \{ \}; F = \{v\}; \quad v.d = 0; \]
\[
\text{while } (F \neq \{\}) \{ \\
\quad f = \text{node in } F \text{ with min } d \text{ value; } \\
\quad \text{Remove } f \text{ from } F, \text{ add it to } S; \\
\quad \text{for each neighbor } w \text{ of } f \{ \\
\quad \quad \text{if } (w \text{ not in } S \text{ or } F) \{ \\
\quad \quad \quad w.d = f.d + \text{weight}(f, w); \\
\quad \quad \quad \text{add } w \text{ to } F; \\
\quad \quad \} \quad \text{else if } (f.d + \text{weight}(f, w) < w.d) \{ \\
\quad \quad \quad w.d = f.d + \text{weight}(f, w); \\
\quad \}\} \\
\}\]
Dijkstra’s Shortest Paths: Pseudocode

\[S = \{ \}; \quad F = \{ v \}; \quad v.d = 0; \]
\[
\text{while } (F \neq \{ \}) \{ \\
\quad f = \text{node in } F \text{ with min } d \text{ value; } \\
\quad \text{Remove } f \text{ from } F, \text{ add it to } S; \\
\quad \text{for each neighbor } w \text{ of } f \{ \\
\qquad \text{if } (w \text{ not in } S \text{ or } F) \{ \\
\quad \qquad w.d = f.d + \text{weight}(f, w); \\
\quad \qquad \text{add } w \text{ to } F; \\
\quad \} \text{ else if } (f.d + \text{weight}(f,w) < w.d) \{ \\
\qquad w.d = f.d + \text{weight}(f,w); \\
\quad \}
\}
\]

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
move node \(f \) with smallest \(d \) from \(F \) to \(S \)
Dijkstra’s Shortest Paths: Pseudocode

\[S = \{ \}; \ F = \{v\}; \ v.d = 0; \]

while \((F \neq \{\})\) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:
 move node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
Dijkstra’s Shortest Paths: Pseudocode

S = { }; F = {v}; v.d = 0;
while (F ≠ { }) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if path to w via f is shorter:
 update w’s shortest path length
What if we want to know the shortest path?

S = {}; F = {v}; v.d = 0;
while (F ≠ {})
 {
f = node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
}
 }

- At termination: for each reachable node n, n.d stores the **length** of the shortest path from v to n.
- We didn’t keep track of **how** to get from v to n!
What if we want to know the shortest path?

S = \{ \}; F = \{v\}; \ v.d = 0; \ v.bp = \text{null};

\textbf{while} (F \neq \{\}) {
 f = \text{node in F with min d value};
 \text{Remove f from F, add it to S};
 \text{for each neighbor w of f} {
 \text{if} (w \text{ not in S or F}) {
 w.d = f.d + \text{weight}(f, w);
 w.bp = f;
 \text{add w to F};
 } \text{else if} (f.d+\text{weight}(f,w) < w.d) {
 w.d = f.d+\text{weight}(f,w);
 w.bp = f
 }
 }
}\}

Each node could store the full path, but that would be expensive to keep updated.

\textbf{Strategy}: maintain a \textbf{backpointer} at each node pointing to the previous node in the shortest path.
What if we want to know the shortest path? Example

S = {}; F = {v}; v.d = 0; v.bp = null;

while (F ≠ {})
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }

Strategy: maintain a backpointer at each node pointing to the previous node in the shortest path.
S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d + weight(f,w);
 w.bp = f
 }
 }
}
S:
F:
<table>
<thead>
<tr>
<th>Node</th>
<th>d</th>
<th>bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Questions?
The next slide very important.
Implementing Dijkstra Efficiently (A4)

1. Store Frontier in a min-heap priority queue with d-values as priorities.

2. To efficiently iterate over neighbors, use an adjacency list graph representation.

3. Could store w.d and w.bp in Node class; in A4, we use a HashMap<Node,PathData>.

4. No need to explicitly store Settled or Unexplored sets: a node is in S or F iff it is in the map.

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ { }) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}
Implementing Dijkstra Efficiently (A4)

\[S = \{ \}; \ F = \{ v \}; \ v.d = 0; \ v.bp = \text{null}; \]
\[\text{while} \ (F \neq \{ \}) \ { \]
\[\quad f = \text{node in } F \text{ with min } d \text{ value}; \]
\[\quad \text{Remove } f \text{ from } F, \text{ add it to } S; \]
\[\quad \text{for each neighbor } w \text{ of } f \ { \]
\[\quad \quad \text{if } (w \text{ not in } S \text{ or } F) \ { \]
\[\quad \quad \quad w.d = f.d + \text{weight}(f, w); \]
\[\quad \quad \quad w.bp = f; \]
\[\quad \quad \quad \text{add } w \text{ to } F; \]
\[\quad \quad } \]
\[\quad } \]
\[\quad } \]
\[\quad } \]
\[1. \text{ Store Frontier in a min-heap priority queue with } d\text{-values as priorities.} \]
\[2. \text{ To efficiently iterate over neighbors, use an adjacency list graph representation.} \]
\[3. \text{ Could store } w.d \text{ and } w.bp \text{ in Node class; in A4, we use a HashMap<Node,PathData>} \]
\[4. \text{ No need to explicitly store Settled or Unexplored sets: a node is in } S \text{ or } F \text{ iff it is in the map.} \]
Implementing Dijkstra Efficiently (A4)

Implementing Dijkstra Efficiently (A4)

S = {}; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

1. Store Frontier in a min-heap priority queue with d-values as priorities.
2. To efficiently iterate over neighbors, use an adjacency list graph representation.
3. Could store w.d and w.bp in Node class; in A4, we use a HashMap<Node,PathData>
4. No need to explicitly store Settled or Unexplored sets: a node is in S or F iff it is in the map.
Implementing Dijkstra Efficiently (A4)

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ { }) {
f = node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f, w) < w.d) {
 w.d = f.d+weight(f, w);
 w.bp = f
 }
}
}

1. Store Frontier in a min-heap priority queue with d-values as priorities.
2. To efficiently iterate over neighbors, use an adjacency list graph representation.
3. Could store w.d and w.bp in Node class; in A4, we use a HashMap<Node,PathData>
4. No need to explicitly store Settled or Unexplored sets: a node is in S or F iff it is in the map.
Implementing Dijkstra Efficiently (A4)

1. Store Frontier in a min-heap priority queue with d-values as priorities.

2. To efficiently iterate over neighbors, use an adjacency list graph representation.

3. Could store w.d and w.bp in Node class; in A4, we use a HashMap<Node,PathData>

4. No need to explicitly store Settled or Unexplored sets: a node is in S or F iff it is in the map.

```plaintext
S = {}; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
    f = node in F with min d value;
    Remove f from F, add it to S;
    for each neighbor w of f {
        if (w not in S or F) {
            w.d = f.d + weight(f, w);
            w.bp = f;
            add w to F;
        } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
            w.bp = f
        }
    }
}
```
Implementing Dijkstra Efficiently (A4)

\[S = \{ \}; \quad F = \{ v \}; \quad v. d = 0; \quad v. b p = \text{null}; \]

\[\text{while} \ (F \neq \{ \}) \ { \}

\quad \text{f = node in F with min d value;}
\quad \text{Remove f from F, add it to S;}
\quad \text{for each neighbor w of f \{}
\quad \quad \text{if \ (w not in S or F) \{}
\quad \quad \quad \text{w. d = f. d + weight(f, w);}
\quad \quad \quad \text{w. b p = f;}
\quad \quad \quad \text{add w to F;}
\quad \quad \} \text{else if \ (f. d+weight(f,w) < w. d) \{}
\quad \quad \quad \text{w. d = f. d+weight(f,w);}
\quad \quad \quad \text{w. b p = f}
\quad \quad \}}
\]

4. No need to explicitly store Settled or Unexplored sets:
\[w \text{ is in S or F} \leftrightarrow \text{it is in the map.} \]

The only time we need to check membership in S is here.
Implementing Dijkstra Efficiently (A4)

\[S = \{ \}; \quad F = \{v\}; \quad v.d = 0; \quad v.bp = \text{null}; \]

while \((F \neq \{\})\) \{
 \text{f = node in F with min d value;}
 \text{Remove f from F, add it to S;}
 \text{for each neighbor w of f \{}
 \text{if (w not in S or F) \{}
 w.d = f.d + \text{weight}(f, w);
 w.bp = f;
 \text{add w to F;}
 \}}
 \text{else if (f.d+weight(f,w) < w.d) \{}
 w.d = f.d+\text{weight}(f,w);
 w.bp = f
 \}}
 \}
\}

4. No need to explicitly store Settled or Unexplored sets:
 \(w\) is in \(S\) or \(F\) <=> it is in the map.

The only time we need to check membership in \(S\) is \textbf{here}.

If \(w\) is not in \(S\) or \(F\), it must be in Unexplored.
Implementing Dijkstra Efficiently (A4)

4. No need to explicitly store Settled or Unexplored sets: w is in S or F <=> it is in the map.

The only time we need to check membership in S is here.

If w is not in S or F, it must be in Unexplored.

therefore, we haven’t found a path to it.
Implementing Dijkstra Efficiently (A4)

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ { }) {
f = node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
}
}

4. No need to explicitly store Settled or Unexplored sets: w is in S or F <=> it is in the map.
The only time we need to check membership in S is here.
If w is not in S or F, it must be in Unexplored. therefore, we haven’t found a path to it.
therefore, it has no d or bp yet.
Implementing Dijkstra Efficiently (A4)

S = {}; F = {v}; v.d = 0; v.bp = null;

while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

4. No need to explicitly store Settled or Unexplored sets:
 w is in S or F <=> it is in the map.

 The only time we need to check membership in S is here.
 If w is not in S or F,
 it must be in Unexplored.
 therefore,
 we haven’t found a path to it.

 therefore,
 it has no d or bp yet.
 therefore,
 it isn’t in the map!
Proof of Correctness

• Dijkstra’s algorithm is **greedy**: it makes a sequence of *locally* optimal moves, which results in the *globally* optimal solution.

• Most algorithms don’t work like this - need to prove that it results in the global optimum.

• Specifically: It is not obvious that there cannot still be a shorter path to the Frontier node with smallest d-value.
Proof of Correctness: Invariant

The while loop in Dijkstra’s algorithm maintains a 3-part invariant:

1. For a Settled node \(s \), a shortest path from \(v \) to \(s \) contains only settled nodes and \(s.d \) is the length of the shortest \(v \rightarrow s \) path.

2. For a Frontier node \(f \), at least one \(v \rightarrow f \) path contains only settled nodes (except perhaps for \(f \)) and \(f.d \) is the length of the shortest such path.

3. All edges leaving \(S \) go to \(F \) (or: no edges from \(S \) to Unexplored)
Proof of Correctness:

Theorem

For a node `f` in the Frontier with minimum `d` value (over all nodes in the Frontier), `f.d` is the shortest-path distance from `v` to `f`.

Proof: Show that any other path from `v` to `if` has length $\geq f.d$

```plaintext
S = {}; F = {v}; v.d = 0;
while (F ≠ {}) {
    f = node in F with min d value;
    Remove f from F, add it to S;
    for each neighbor w of f {
        if (w not in S or F) {
            w.d = f.d + weight(f, w);
            add w to F;
        } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
        }
    }
}
Case 1: if v is in F, then S is empty and v.d = 0, which is trivially the shortest distance from v to v.
```
Proof of Correctness:

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), $f.d$ is the shortest-path distance from v to f.

Proof: Show that any other path from v to f has length $\geq f.d$.

$$S = \{ \}; \quad F = \{v\}; \quad v.d = 0;$$

while $(F \neq \{\})$ {

$f =$ node in F with min d value;

Remove f from F, add it to S;

for each neighbor w of f {

if $(w \text{ not in } S \text{ or } F)$ {

$w.d = f.d + \text{weight}(f, w);$

add w to F;

} else if $(f.d+\text{weight}(f,w) < w.d)$ {

$w.d = f.d+\text{weight}(f,w);$

}

} **Case 2**: v is in S. Part 2 of the invariant says:

- $f.d$ is the length of the shortest path from v to f containing all settled nodes except f, and $f.d$ is the length of such a path.
Proof of Correctness:

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), $f.d$ is the shortest-path distance from v to f.

Proof: Show that any other path from v to if has length $\geq f.d$

\begin{verbatim}
S = {}; F = {v}; v.d = 0;
while (F \neq { }) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}
\end{verbatim}

Case 2: v is in S. Part 2 of the invariant says:

- $f.d$ is the length of the shortest path from v to f containing all settled nodes except f, and $f.d$ is the length of such a path.

Any other v-f path must either be longer or go through another frontier node g then arrive at f:

![Diagram of shortest path from v to f]
Proof of Correctness:

Theorem

For a node f in the Frontier with minimum d value (over all nodes in the Frontier), f.d is the shortest-path distance from v to f.

Proof: Show that any other path from v to f has length \(\geq f.d \).

\[
S = \{ \}; \quad F = \{v\}; \quad v.d = 0; \\
\text{while } (F \neq \{\}) \{ \\
f = \text{node in F with min d value}; \quad \text{Remove f from F, add it to S;} \\
\text{for each neighbor w of f } \{ \\\n\quad \text{if } (w \text{ not in S or F) } \{ \\\n\quad \quad w.d = f.d + \text{weight}(f, w); \quad \text{add w to F;} \\\n\quad \} \quad \text{else if } (f.d+\text{weight}(f,w) < w.d) \{ \\\n\quad \quad w.d = f.d+\text{weight}(f,w); \\\n\} \quad \text{Case 2: v is in S. Part 2 of the invariant says:} \\
\quad \quad \bullet \quad f.d \text{ is the length of the shortest path from v to f containing all settled nodes except f, and f.d is the length of such a path.} \\
\quad \} \quad \text{Any other v-f path must either be longer or go through another frontier node g then arrive at f:}
\]
Proof of Correctness:

Theorem: For a node f in the Frontier with minimum d value (over all nodes in the Frontier), $f.d$ is the shortest-path distance from v to f.

Proof: Show that any other path from v to f has length $\geq f.d$.

$S = \{ \}; F = \{v\}; \ v.d = 0$
while ($F \neq \{\}$) {
 $f =$ node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 $w.d = f.d + \text{weight}(f, w)$;
 add w to F;
 } else if ($f.d + \text{weight}(f, w) < w.d$) {
 $w.d = f.d + \text{weight}(f, w)$;
 }
 }
}

Case 2: v is in S. Part 2 of the invariant says:

- $f.d$ is the length of the shortest path from v to f containing all settled nodes except f, and $f.d$ is the length of such a path.

Any other v-f path must either be longer or go through another frontier node g then arrive at f:

$d.f \leq d.g$,
so that path cannot be shorter.
Proof of Correctness: Invariant Maintenance

1. For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path.

3. All edges leaving S go to F (or: no edges from S to Unexplored)

\[S = \{ \}; \quad F = \{v\}; \quad v.d = 0; \]

\[
\text{while} \quad (F \neq \{\}) \quad \{
\quad f = \text{node in } F \text{ with min } d \text{ value};
\quad \text{Remove } f \text{ from } F, \text{ add it to } S;
\quad \text{for each neighbor } w \text{ of } f \quad \{
\quad \text{if } (w \text{ not in } S \text{ or } F) \quad \{
\quad \quad w.d = f.d + \text{weight}(f, w);
\quad \quad \text{add } w \text{ to } F;
\quad \} \quad \text{else if } (f.d+\text{weight}(f,w) < w.d) \quad \{
\quad \quad w.d = f.d+\text{weight}(f,w);
\quad \}
\quad \}
\} \]
Proof of Correctness: Invariant Maintenance

S = {}; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

At initialization:
1. S is empty; trivially true.
2. v.d = 0, which is the shortest path.
3. S is empty, so no edges leave it.
Proof of Correctness: Invariant Maintenance

1. For a Settled node s, a shortest path from v to s contains only settled nodes and s.d is length of shortest v -> s path.
2. For a Frontier node f, at least one v -> f path contains only settled nodes (except perhaps for f) and f.d is the length of the shortest such path
3. All edges leaving S go to F (or: no edges from S to Unexplored)

S = { }; F = {v}; v.d = 0;
while (F ≠ { }) {
f = node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f {
if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
} else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
}
}
At each iteration:
1. Theorem says f.d is the shortest path, so it can safely move to S
2. Updating w.d maintains Part 2 of the invariant.
3. Each neighbor is either already in F or gets moved there.