Whatcom

o E Kul/q? |
Community College %%, |
Dey
o pakerview Rd E Bakerview Rd
Bellis Fair O
Bellingham Golf
4, and Country Club
{/”’n, l
%, 2
7,,1 g
|
%
4
8 Barkley Blvd o Barkley Village
&
= 15 min .
4.8 miles = 11 min
1 5.5 miles
7.) .\‘\\
%, o, Mp‘
Ve L A
o> (%) Y
< g 5
9, I
4 ‘s : lowa St
= 14 min [\3%, ||
5.6 miles QY
Bellingham !
F
I;m»w.:y Dr
J
Western Washingtong
University
Boulevard

CSCI 241

Lecture 21
Dijkstra’s Single-Source Shortest Paths Algorithm

Announcements

Announcements

e | ab 8 is out.

Announcements

e | ab 8 is out.

e A4 Is out

e |’ll post full slides for Dijkstra even if we don't get
through all of them today.

e |'ll also post two sample graphs for you to run the
algorithm on.

Announcements

e | ab 8 is out.

e A4 Is out

e |’ll post full slides for Dijkstra even if we don't get
through all of them today.

e |'ll also post two sample graphs for you to run the
algorithm on.

e Quiz 5 is graded, video is posted.

Goals

e Know how to determine whether a graph is connected
 Know the definition of connected components.
* Know what a weighted graph is.

* Understand the intuition behind Dijkstra’s shortest paths
algorithm.

* Be able to execute Dijkstra’s algorithm manually on a
graph.

* Be prepared to implement Dijkstra's algorithm efficiently.

* Know how to augment the algorithm to keep

backpointers in order to reconstruct the sequence of
nodes in a shortest path.

Graph Terminology

e A graph is connected if there is a
path between every pair of nodes.

* A directed graph is strongly connected if there
Is a directed path between all pairs of nodes.

* A directed graph is weakly connected if the
graph becomes connected when all edges are
converted to undirected edges.

Not strongly
connected

Not weakly
e A graph can have multiple connected connected
components: subsets of the vertices
and edges that are connected.

Weighted Graphs

* Like a normal graph, but edges have weights.

 Formally: a graph (V,E) with an accompanying weight
function w: E -> R

* may be directed or undirected.

* Informally: label edges with their weights

* Representation: Q

e adjacency list - store weight of (u,v) with v the node in u’s list

e adjacency matrix - store weight in matrix entry for (u,v)

Paths in Weighted Graphs

* The length (or weight) of a path in a weighted
graph is the sum of the edge weights along
that path.

e ABCD: What’s the
length of the shortest
path from 3 to 67
A 7

B. 8
C. 9
D. 1

0

Computing Shortest Paths
in Unweighted Graphs

e Perform a breadth-first search (that’s it!)

e BFS visits nodes in order of “hop distance”,
or path length!

* BFS(1):

Lo

Computing Shortest Paths
in Unweighted Graphs

e Perform a breadth-first search (that’s it!)

e BFS visits nodes in order of “hop distance”,
or path length!

e BFS(1): o

Lo

Computing Shortest Paths
in Unweighted Graphs

e Perform a breadth-first search (that’s it!)

e BFS visits nodes in order of “hop distance”,
or path length!

e BFS(1): o0 :

o

/

Computing Shortest Paths
in Unweighted Graphs

e Perform a breadth-first search (that’s it!)

e BFS visits nodes in order of “hop distance”,
or path length!

e BFS(1): o0 :

o\

/

Computing Shortest Paths
in Unweighted Graphs

e Perform a breadth-first search (that’s it!)

e BFS visits nodes in order of “hop distance”,
or path length!

e BFS(1): o

Computing Shortest Paths
In Weighted Graphs

BFS doesn’t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1)

Computing Shortest Paths
In Weighted Graphs

BFS doesn’t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1)

Computing Shortest Paths
In Weighted Graphs

BFS doesn’t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1) 2

Computing Shortest Paths
In Weighted Graphs

BFS doesn’t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1) 2

Computing Shortest Paths
In Weighted Graphs

BFS doesn’t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1) 2

Dijkstra’s Shortest Paths:
Subpaths

e Fact: subpaths of shortest paths are shortest paths

e Example: if the shortest path from u to w goes
through v, then

e the part of that path from u to v is the shortest
path from u to v.

e |f there were some better path u..v, that would
also be part of a better way to get from u to w.

Dijkstra’s Shortest Paths:
Subpaths

e Fact: subpaths of shortest paths are shortest
paths

e Conseguence: a candidate shortest path
from start node s to some node v’s neighbor
w is the shortest path from to v + the edge
weight from v to w.

shortest path u..v = v.d

"0 0

Dijkstra’s Shortest Paths:
Intuition

* |Intuition: explore nodes like BFS, but in order of path length
iInstead of number of hops.

* There are three kinds of nodes:
e Settled - nodes for which we know the actual shortest path.

e Frontier - nodes that have been visited but we don'’t
necessarily have their actual shortest path

* Unexplored - all other nodes.

* Each node n keeps track of n.d, the length of the shortest
known known path from start.

* \WWe may discover a shorter path to a frontier node than the one
we’ve found already - if so, update n.d.

Dijkstra’s Shortest Paths:
Cartoon

settled frontier unexplored

Before:

During:

After:

Dijkstra’s Shortest Paths:
Cartoon

settled frontier unexplored

Before: Q

During:

After:

Dijkstra’s Shortest Paths:

Cartoon
settled frontier unexplored

During:

S

After:

Dijkstra’s Shortest Paths:

Cartoon
settled frontier unexplored

During:

S

- <:E§;ii;:/4l;;ii;i£:> <:::> <:5i§é;>
unrea nodes

Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier i1sn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:
set 1ts path length
add 1t to frontier
else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier i1sn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:

f.d
set its path length e o Q
add 1t to frontier wt(f,w)

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier i1sn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:

f.d
set its path length e o Q
add 1t to frontier wt(f,w)

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

ttled
settle A’Q\\W_d = u.d + wi(u,w)
6 o0 e

Dijkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier i1sn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:

f.d
set its path length e 0 Q
add 1t to frontier wt(f,w)

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

settled o
é — L

Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
Known Initialize Frontier to the start node
distances: While the frontier isn’t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:
set 1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set:

Frontier set:
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
Known Initialize Frontier to the start node
distances: While the frontier isn’'t empty:
move the node f with smallest d from F to S
For each neighbor w of f:
1f we’ve never seen w before:
set 1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set: {}

Frontier set: {4}
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
known Initialize Frontier to the start node

distances: While the frontier isn’t empty:

move the node f with smallest d from F to S

FOr each neighbor w of f:

f: 4
1f we’ve never seen w before: .
set 1ts path length to f.d + wt(f,w)
add w to the frontier
else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set: {4}

Frontier set: {}
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
known Initialize Frontier to the start node

distances: While the frontier isn’t empty:
move the node f with smallest d from F to S

For each neighbor w of f: m
1f we’ve never seen w before:
set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set: {4}

Frontier set: {0}
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
known Initialize Frontier to the start node

distances: While the frontier isn’t empty:

move the node f with smallest d from F to S

FOr each neighbor w of f:

f: O
1f we’ve never seen w before: -

set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set: {4, 0}

Frontier set: {}
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
known Initialize Frontier to the start node

distances: While the frontier isn’t empty:
move the node f with smallest d from F to S

For each neighbor w of f: m
1f we’ve never seen w before:
set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set: {4, 0}

Frontier set: {1}
shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
known Initialize Frontier to the start node

distances: While the frontier isn’t empty:
move the node f with smallest d from F to S

For each neighbor w of f: m
1f we’ve never seen w before:
set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set: {4, 0}

Frontier set: {1, 2}
shortest-paths(4)

Dijkstra’s Shortest Paths:

Best
known
distances:

Settled set: {4, 0, 1)

Frontier set: {2}

Execution

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier 1isn’t empty:

move the node f with smallest d from F to S

FOr each neighbor w of f:

f: 1
1f we’ve never seen w before: -

set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

shortest-paths(4)

Dijkstra’s Shortest Paths:
Execution

Best Initialize Settled to empty
known Initialize Frontier to the start node

distances: While the frontier isn’t empty:
move the node f with smallest d from F to S

For each neighbor w of f: m
1f we’ve never seen w before:
set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

Settled set: {4, 0, 1)

Frontier set: {2, 3}
shortest-paths(4)

Dijkstra’s Shortest Paths:

Best
known
distances:

Settled set: {4, O, 1, 2}

Frontier set: {3}

Execution

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier 1isn’t empty:

move the node f with smallest d from F to S

FOr each neighbor w of f:

f: 2
1f we’ve never seen w before: -

set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

shortest-paths(4)

Dijkstra’s Shortest Paths:

Execution

Best Initialize Settled to empty
known Initialize Frontier to the start node

distances: While the frontier isn’t empty:

Settled set: {4, O, 1, 2}

Frontier set: {3}

move the node f with smallest d from F to S
For each neighbor w of £

. . f: 2
1f we’ve never seen w before:

set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’s shortest path length

2.

+Wt(23)<3d
/<8

shortest-paths(4)

Dijkstra’s Shortest Paths:

Best
known
distances:

Settled set: {4, 0, 1, 2, 3}

Frontier set: {} Empty => done!

Execution

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier 1isn’t empty:

move the node f with smallest d from F to S

FOr each neighbor w of f:

f: 3
1f we’ve never seen w before: -

set 1ts path length to f.d + wt(f,w)
add w to the frontier

else 1f the path to w via £ 1s shorter:
update w’'s shortest path length

shortest-paths(4)

Dijkstra’s Shortest Paths:
Pseudocode

S = { }; F = {V}; v.d =0; Tnitialize Settled to empty
while (F # {}) { Initialize Frontier to the start node
f = node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of 1 {
if (wnotin SorF) {
w.d = f.d + weight(f, w);
add w to F;
} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);
}
}
h

Dijkstra’s Shortest Paths:
Pseudocode

S = { }; F = {V}; v.d =0; Tnitialize Settled to empty
while (F_—/_— {}) { Initialize Frontier to the start node

f = node in F with min d value; While the frontier isn’t empty:
Remove ffromF.add itto S: move node f with smallest d
K V)

from F to S
for each neighbor w of 1 {
if (wnotin SorF) {
w.d = f.d + weight(f, w);
add w to F;
} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);
}
h
h

Dijkstra’s Shortest Paths:
Pseudocode

S = { }; F = {V}; v.d =0; Initialize Settled to empty
while (F_—/_— {}) { Initialize Frontier to the start node

f = node in F with min d value; While the frontier isn’t empty:

. move node f 1th smallest d
Remove f from F, add it to S; M b
from F to S

for each neighbor wolf{ For each neighbor w of f:
if (W notin S or F) { 1f we’ve never seen w before:
: set i1ts path length
wd= f.d+ Welght(f’ W); add it to frontier

add w to F;

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);

}

h
h

Dijkstra’s Shortest Paths:
Pseudocode

S = { }; F = {V}; v.d =0; Tnitialize Settled to empty
while (F_-/_. {}) { Initialize Frontier to the start node

f = node in F with min d value; While the frontier isn’t empty:

Remove f from F. add it to S: move node f with smallest d

. ’ ’ from F to S
for each ne1ghb0r w of f{ For each neighbor w of f:
if (W notin S or F) { 1f we’ve never seen w before:
. : . set 1its path length
wd= f.d+ Welght(f’ w); add it to frontier

add w to F;
} else if (f.d+weight(f,w) < w.d) i
w.d = f.d+weight(f,w); N

se 1f path to w via f is shorter:
update w’s shortest path length

¥
h
h

What if we want to know
the shortest path?

S;l{ }(;FF ={{};};{ v.d=0; e At termination: for each

wilic e

f = node in F with min d value; reachable node n, n.a
Remove f from F, add it to S; stores the length of the
for each neighbor w of f { shortest path from v to n.

if (wnotin SorF) {

w.d = f.d + weight(f, w); L
add w to F; e We didn’t keep track of

} else it (f.d+weight(f,w) <w.d) { how to get from v to n!
w.d = f.d+weight(f,w);
h

¥
¥

What if we want to know
the shortest path?

S={};F={v}; v.d =0; v.bp = null;

while (F = {}) {
f = node in F with min d value; Each node could store the
Remove f from F, add it to S; full path, but that would be

for each neighbor w of 1 { :
if (w not in S or F) { expensive to keep updated.

w.d = f.d + weight(f, w);
w.bp =1;
add w to F;
} else if (f.d+weight(f,w) < w.d) { : : :
wid = f.deweight(.w) Strategy_. maintain a
w.bp =f backpointer at each node
} pointing to the previous

\ ; node in the shortest path.

What if we want to know
the shortest path? Example

S={};F={v}; v.d =0; v.bp = null;
while (F#{}) { 2 4
f = node 1in F with min d value; Q
Remove f from F, add it to S; - K 1
s O

for each neighbor w of 1 { 2

if (wnotin SorF) { 6/'

w.d = f.d + weight(f, w); shortest-paths(4)
w.bp = {;

add w to F;
} else if (f.d+weight(f,w) < w.d) { Strategy: maintain a

w.d = f.d+weight(f,w); -
wbp = f backpointer at each node

) pointing to the previous

\ ; node in the shortest path.

S={};F={v}; v.d =0; v.bp = null;
while (F#{}) {
f = node 1in F with min d value;
Remove f from F, add it to S;
for each neighbor w of 1 {

if (wnotin SorF) {
wd= f.d+ W@ight(f, w); ShOrteSt—pathS (4)
w.bp =1;
add w to F;

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);
w.bp =1

Questions?

Implementing Dijkstra
Efficiently (A4)

S={1}:F={v}: vd=0:v.bp=null: 1. Store Frontier in a min-heap

while (F#{}) { priority queue with d-values as
f = node in F with min d value;: priorities.
Remove 1 from F, add it to S; 2. To efficiently iterate over
for each neighbor w of f { neighbors, use an adjacency

if (wnotin SorF) {

, list graph representation.

w.d = f.d + weight(t, w); _

w.bp = f: 3. Could store w.d and w.bp in

add w to F: Node class; in A4, we use a
} else if (f.d+weight(fw) <w.d){ HashMap<Node,PathData>

w.d = f.d+weight(f,w); 4. No need to explicitly store

w.bp =1 Settled or Unexplored sets:
s anodeisinSorFiffitisin

; the map.

}

Implementing Dijkstra
Efficiently (A4)

S={1}:F={v}: vd=0:v.bp=nul: 1- Store Frontier in a min-heap

while (Fz{}) { priority queue with d-values
f = node in F with min d value; as priorities.
Remove ffrom F,add itto5; 2 To efficiently iterate over

for each neighbor w of 1 {

if (wnotin SorF) {
w.d = f.d + weight(t, w);

neighbors, use an adjacency
list graph representation.

w.bp = f; 3. Could store w.d and w.bp in

add w to F; Node class; in A4, we use a
L else if (f.d+weight(f,w) < w.d) { HashMap<Node,PathData>

w.d = L.d+weight(f,w); 4. No need to explicitly store

: w.bp =1 Settled or Unexplored sets:

\ anodeisinSorFiffitisin
\ the map.

Implementing Dijkstra
Efficiently (A4)

S={1}:F={v}: vd=0:v.bp=null: 1. Store Frontier in a min-heap

while (F#{}) { priority queue with d-values as
f = node in F with min d value; priorities.
Remove f from F, add it to S; 2. To efficiently iterate over

for each neighbor w of f {
if (wnotin SorF) {

w.d = f.d + weight(t, w);

neighbors, use an adjacency
list graph representation.

w.bp = f; 3. Could store w.d and w.bp in
add w to F; Node class; in A4, we use a

L else if (f.d+weight(f,w) < w.d) { HashMap<Node,PathData>
W'g - f'?+weight(fﬂw>? 4. No need to explicitly store
w.op =

Settled or Unexplored sets:
}} anodeisinSorFiffitisin
\ the map.

Implementing Dijkstra
Efficiently (A4)

S={1}:F={v}: vd=0:v.bp=null: 1. Store Frontier in a min-heap

while (F#{}) { priority queue with d-values as
f = node in F with min d value; priorities.
Remove f from F, add 1t to S; 2. To efficiently iterate over
for each neighbor w of f { neighbors, use an adjacency

if (wnotin SorF) {

, list graph representation.
w.d = f.d + weight(f, w); _
w.bp = f; 3. Could store w.d and w.bp in
add w to F: Node class; in A4, we use a
L else if (f.d+weight(f,w) < w.d) { HashMap<Node,PathData>
w.d = f.d+weight(f,w); 4. No need to explicitly store

: w.bp =f Settled or Unexplored sets:

\ anodeisinSorFiffitisin
\ the map.

Implementing Dijkstra
Efficiently (A4)

S={1}:F={v}: vd=0:v.bp=null: 1. Store Frontier in a min-heap

while (F#{}) { priority queue with d-values as
f = node in F with min d value;: priorities.
Remove 1 from F, add it to S; 2. To efficiently iterate over
for each neighbor w of f { neighbors, use an adjacency

if (wnotin SorF) {

, list graph representation.
w.d = f.d + weight(f, w); |
w.bp = f; 3. Could store w.d and w.bp in
add w to F: Node class; in A4, we use a
} else if (f.d+weight(f,w) <wd){ HashMap<Node,PathData>
w.d = f.d+weight(f,w); 4. No need to explicitly store

: wbp =f Settled or Unexplored sets:

) anodeisinSorFiffitisin
\ the map.

Implementing Dijkstra
Efficiently (A4)

S={};F={v}; v.d =0; v.bp = null; 4. No need to explicitly store
while (F#{}) { Settled or Unexplored sets:
f =node m F with min d value; w is in S or F <=> it is in the map.

Remove f from F, add it to S; _
for each neighbor w of fA{/.The only time we need to check

if (wnot in S or F) { membership in S is here.

w.d = f.d + weight(t, w);
w.bp =T;
add w to F;

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);
wbp =1

h

}
}

Implementing Dijkstra
Efficiently (A4)

S={};F={v}; v.d =0; v.bp = null; 4. No need to explicitly store
while (F#{}) { Settled or Unexplored sets:
f =node m F with min d value; w is in S or F <=> it is in the map.

Remove f from F, add it to S;

for each neighbor w of 1 {
if (w notin S or F) {/

The only time we need to check
membership in S is here.

wd = fd+ weight(f,w); |fwisnotinSorF,
w.bp =T; it must be in Unexplored.

add w to F;

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);
wbp =1

J

¥
)

Implementing Dijkstra

Efficie

S={};F={v}; v.d=0; v.bp =null
while (F#{}) {
f = node 1in F with min d value;

ntly (A4)

. 4. No need to explicitly store

Settled or Unexplored sets:
wisin S or F <=>itis in the map.

Remove f from F, add it to S;
for each neighbor w of fA{/

The only time we need to check
membership in S is here.

if (wnotinSorkF) {
w.d = f.d + weight(t, w);

If wis notinS orF,
it must be in Unexplored.

w.bp =T;
add w to F;

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);
wbp =1

J

}
}

therefore,
we haven’t found a path to it.

Implementing Dijkstra

Efficie

S={};F={v}; v.d=0; v.bp =null
while (F#{}) {
f = node 1in F with min d value;

ntly (A4)

. 4. No need to explicitly store

Settled or Unexplored sets:
wisin S or F <=>itis in the map.

Remove f from F, add it to S;
for each neighbor w of fA{/

The only time we need to check

if (wnot in S or F) { membership in S is here.

w.d = f.d + weight(t, w);

If wis notinS orF,
it must be in Unexplored.

w.bp =1;
add w to F;

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);
wbp =1

J

}
}

therefore,
we haven’t found a path to it.

therefore,
it has no d or bp yet.

Implementing Dijkstra

Efficie

S={};F={v}; v.d=0; v.bp =null
while (F#{}) {
f = node 1in F with min d value;

ntly (A4)

. 4. No need to explicitly store

Settled or Unexplored sets:
wisin S or F <=>itis in the map.

Remove f from F, add it to S;
for each neighbor w of fA{/

The only time we need to check

if (wnot in S or F) { membership in S is here.

w.d = f.d + weight(t, w);

If wis notinS orF,
it must be in Unexplored.

w.bp =1;
add w to F;

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);
wbp =1

J

}
}

therefore,
we haven’t found a path to it.

therefore,
it has no d or bp yet.

therefore,
it isn’t in the map!

Proof of Correctness

e Dijkstra’s algorithm is greedy: it makes a
sequence of locally optimal moves, which
results in the globally optimal solution.

e Most algorithms don’t work like this - need to prove
that it results in the global optimum.

e Specifically: It is not obvious that there
cannot still be a shorter path to the Frontier
node with smallest d-value.

Proof of Correctness:
Settled Frontier Unexplored Inva ri ant

S F I
The while loop in Dijkstra’s algorithm maintains a 3-

part invariant:

1. For a Settled node s, a shortest path from v to s contains only
settled nodes and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f path contains only
settled nodes (except perhaps for f) and f.d is the length of the
shortest such path

3. All edges leaving S go to F (or: no edges from S to Unexplored)

Proof of Correctness:
s={1:F=0vk vd=0: Theorem

while (F# {}) {
f = node in F with min d value: Theorem: For a node f in the Frontier

Remove f from F, add it to S: With minimum d value (over all nodes in

for each neighbor w of f { the Frontier), f.d is the shortest-path

if (W notin S or F) { distance from v to f.
w.d = f.d+ weight(f,w); Proof: Show that any other path from v
add w to F: to if has length >=f.d

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);

} Case 1:if visin F, then S is empty and v.d = 0, which is trivially the
! shortest distance from v to v.

¥

Proof of Correctness:
s={1:F=0vk vd=0: Theorem

while (F#{}) {
f = node in F with min d value: Theorem: For a node f in the Frontier

Remove f from F, add it to S: With minimum d value (over all nodes in

for each neighbor w of f { the Frontier), f.d is the shortest-path

if (w notin S or F) { distance from v to f.
w.d = f.d+ weight(f,w); Proof: Show that any other path from v
add w to F; to if has length >=f.d

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);
} Case 2: visin S. Part 2 of the invariant says:
} o f.dis the length of the shortest path from v to f containing all
} settled nodes except f, and f.d is the length of such a path.

Proof of Correctness:
s={1:F=0vk vd=0: Theorem

while (F#{}) {
f = node in F with min d value: Theorem: For a node f in the Frontier

Remove f from F, add it to S: With minimum d value (over all nodes in

for each neighbor w of f { the Frontier), f.d is the shortest-path

if (w notin S or F) { distance from v to f.
w.d = f.d+ weight(f,w); Proof: Show that any other path from v
add w to F; to if has length >=f.d

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);
} Case 2: visin S. Part 2 of the invariant says:
} o f.dis the length of the shortest path from v to f containing all
} settled nodes except f, and f.d is the length of such a path.
Any other v-f path must either be longer or go through another
frontier node g then arrive at f:

Proof of Correctness:
s={1:F=0vk vd=0: Theorem

while (F#{}) {
f = node in F with min d value: Theorem: For a node f in the Frontier

Remove f from F, add it to S: With minimum d value (over all nodes in

for each neighbor w of f { the Frontier), f.d is the shortest-path

if (w notin S or F) { distance from v to f.
w.d = f.d+ weight(f,w); Proof: Show that any other path from v
add w to F; to if has length >=f.d

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);
} Case 2: visin S. Part 2 of the invariant says:
} o f.dis the length of the shortest path from v to f containing all
} settled nodes except f, and f.d is the length of such a path.
Any other v-f path must either be longer or go through another

as® L
. .
.
.
-
-
-
-
"
"
L

4

Proof of Correctness:
s={1:F=0vk vd=0: Theorem

while (F#{}) {
f = node in F with min d value: Theorem: For a node f in the Frontier

Remove f from F, add it to S: With minimum d value (over all nodes in

for each neighbor w of f { the Frontier), f.d is the shortest-path

if (w notin S or F) { distance from v to f.
w.d = f.d+ weight(f,w); Proof: Show that any other path from v
add w to F; to if has length >=f.d

} else if (f.d+weight(f,w) < w.d) {
w.d = f.d+weight(f,w);
} Case 2: visin S. Part 2 of the invariant says:
} o f.dis the length of the shortest path from v to f containing all
} settled nodes except f, and f.d is the length of such a path.
Any other v-f path must either be longer or go through another

frontier node g then arrive at f: -@—@:L
d.f <= d.g,

so that path cannot be shorter ' @ @ Hf

Proof of Correctness:
Invariant Maintenance

PR _ S 1. For a Settled node s, a shortest path
> B U F=1vis vd =0; from v to s contains only settled nodes
while (F#}) { and s.d is length of shortest v -> s path.
f = node 1in F with min d value;
Remove f from F, add it to S;

for each neighbor w of f {

2. For a Frontier node f, at least one v -> f
path contains only settled nodes (except
perhaps for f) and f.d is the length of the

if (w not in S or F) 1 shortest such path
w.d = f.d + weight(t, w);
add w to F: 3. All edges leaving S go to F (or: no edges

} else if (f.d+weight(fw) < w.d) { "M S to Unexplored)

w.d = f.d+weight(f,w);
}

¥
¥

Proof of Correctness:
Invariant Maintenance

PR _ S 1. For a Settled node s, a shortest path
S - U F=1vis vd =0; from v to s contains only settled nodes
while (F#}) { and s.d is length of shortest v -> s path.
f = node 1in F with min d value;
Remove f from F, add it to S;

for each neighbor w of f {

2. For a Frontier node f, at least one v -> f
path contains only settled nodes (except
perhaps for f) and f.d is the length of the

if (W not in S or F) { shortest such path
w.d = f.d + weight(t, w);
add w to F: 3. All edges leaving S go to F (or: no edges

} else if (f.d+weight(f,w) < w.d) { oM S to Unexplored)

w.d = f.d+weight(f,w);

! At initialization:
1 1. S is empty; trivially true.
) 2. v.d =0, which is the shortest path.

3. Sis empty, so no edges leave it.

Proof of Correctness:
Invariant Maintenance

PR . S 1. For a Settled node s, a shortest path
S - U F=1vis vd =0; from v to s contains only settled nodes
while (F#}) { and s.d is length of shortest v -> s path.
f = node 1in F with min d value;
Remove f from F, add it to S;

for each neighbor w of f {

2. For a Frontier node f, at least one v -> f
path contains only settled nodes (except
perhaps for f) and f.d is the length of the

if (W not in S or F) { shortest such path
w.d = f.d + weight(t, w);
add w to F: 3. All edges leaving S go to F (or: no edges

} else if (f.d+weight(f,w) < w.d) { oM S to Unexplored)

w.d = f.d+weight(f,w);

J At each iteration:
1. Theorem says f.d is the shortest path, so it can safely move to S

J 2. Updating w.d maintains Part 2 of the invariant.
3. Each neighbor is either already in F or gets moved there.

