
CSCI 241
Lecture 21


Dijkstra’s Single-Source Shortest Paths Algorithm
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Goals
• Know how to determine whether a graph is connected 

• Know the definition of connected components.

• Know what a weighted graph is.

• Understand the intuition behind Dijkstra’s shortest paths 

algorithm.

• Be able to execute Dijkstra’s algorithm manually on a 

graph.

• Be prepared to implement Dijkstra's algorithm efficiently.

• Know how to augment the algorithm to keep 

backpointers in order to reconstruct the sequence of 
nodes in a shortest path.



Graph Terminology
• A graph is connected if there is a 

path between every pair of nodes.


• A directed graph is strongly connected if there 
is a directed path between all pairs of nodes.


• A directed graph is weakly connected if the 
graph becomes connected when all edges are 
converted to undirected edges.


• A graph can have multiple connected 
components: subsets of the vertices 
and edges that are connected.
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Weighted Graphs
• Like a normal graph, but edges have weights.


• Formally: a graph (V,E) with an accompanying weight 
function w: E -> ℝ


• may be directed or undirected.


• Informally: label edges with their weights


• Representation:


• adjacency list - store weight of (u,v) with v the node in u’s list


• adjacency matrix - store weight in matrix entry for (u,v)
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Paths in Weighted Graphs
• The length (or weight) of a path in a weighted 

graph is the sum of the edge weights along 
that path.
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• ABCD: What’s the 
length of the shortest 
path from 3 to 6? 

A. 7

B. 8

C. 9

D. 10



• Perform a breadth-first search (that’s it!)


• BFS visits nodes in order of “hop distance”, 
or path length!


• BFS(1):

Computing Shortest Paths 
in Unweighted Graphs
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• BFS visits nodes in order of “hop distance”, 
or path length!
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• Perform a breadth-first search (that’s it!)


• BFS visits nodes in order of “hop distance”, 
or path length!
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• Perform a breadth-first search (that’s it!)


• BFS visits nodes in order of “hop distance”, 
or path length!


• BFS(1):

Computing Shortest Paths 
in Unweighted Graphs

3

2

6

5

4

1

0 1

1

22



• Perform a breadth-first search (that’s it!)


• BFS visits nodes in order of “hop distance”, 
or path length!


• BFS(1):

Computing Shortest Paths 
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Computing Shortest Paths 
in Weighted Graphs

BFS doesn’t visit nodes in order of shortest 
path length:

(edge weights)
(shortest path length from node 1)
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Computing Shortest Paths 
in Weighted Graphs

BFS doesn’t visit nodes in order of shortest 
path length:

(edge weights)
(shortest path length from node 1)
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Computing Shortest Paths 
in Weighted Graphs

BFS doesn’t visit nodes in order of shortest 
path length:

(edge weights)
(shortest path length from node 1)
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Computing Shortest Paths 
in Weighted Graphs

BFS doesn’t visit nodes in order of shortest 
path length:

(edge weights)
(shortest path length from node 1)
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Computing Shortest Paths 
in Weighted Graphs

BFS doesn’t visit nodes in order of shortest 
path length:

(edge weights)
(shortest path length from node 1)
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Dĳkstra’s Shortest Paths: 
Subpaths

• Fact: subpaths of shortest paths are shortest paths


• Example: if the shortest path from u to w goes 
through v, then


• the part of that path from u to v is the shortest 
path from u to v.


• if there were some better path u..v, that would 
also be part of a better way to get from u to w.

u v w… …



Dĳkstra’s Shortest Paths: 
Subpaths

• Fact: subpaths of shortest paths are shortest 
paths


• Consequence: a candidate shortest path 
from start node s to some node v’s neighbor 
w is the shortest path from to v + the edge 
weight from v to w.

u v w…
shortest path u..v = v.d

wt(v,w)



Dĳkstra’s Shortest Paths: 
Intuition

• Intuition: explore nodes like BFS, but in order of path length 
instead of number of hops. 

• There are three kinds of nodes:


• Settled - nodes for which we know the actual shortest path.


• Frontier - nodes that have been visited but we don’t 
necessarily have their actual shortest path


• Unexplored - all other nodes.


• Each node n keeps track of n.d, the length of the shortest 
known known path from start.


• We may discover a shorter path to a frontier node than the one 
we’ve found already - if so, update n.d.



Dĳkstra’s Shortest Paths: 
Cartoon

settled frontier unexplored
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After:
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Dĳkstra’s Shortest Paths: 
Cartoon

settled frontier unexplored
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Dĳkstra’s Shortest Paths: 
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
  move the node f with smallest d from F to S
  For each neighbor w of f:
    if we’ve never seen w before:
      set its path length
      add it to frontier
  else if the path to w via f is shorter:
      update w’s shortest path length
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Dĳkstra’s Shortest Paths: 
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
  move the node f with smallest d from F to S
  For each neighbor w of f:
    if we’ve never seen w before:
      set its path length
      add it to frontier
  else if the path to w via f is shorter:
      update w’s shortest path length

s f w…
f.d

s f w…

u…
w.d = u.d + wt(u,w)

f.d + wt(f,w)

settled
u.d + wt(u,w)

wt(f,w)



Dĳkstra’s Shortest Paths: 
Execution
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Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
  move the node f with smallest d from F to S
  For each neighbor w of f:
    if we’ve never seen w before:
      set its path length to f.d + wt(f,w)
      add w to the frontier
    else if the path to w via f is shorter:
      update w’s shortest path length

shortest-paths(4)
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  move the node f with smallest d from F to S
  For each neighbor w of f:
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    else if the path to w via f is shorter:
      update w’s shortest path length
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  For each neighbor w of f:
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      add w to the frontier
    else if the path to w via f is shorter:
      update w’s shortest path length
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Execution
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Dĳkstra’s Shortest Paths: 
Execution
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While the frontier isn’t empty:
  move the node f with smallest d from F to S
  For each neighbor w of f:
    if we’ve never seen w before:
      set its path length to f.d + wt(f,w)
      add w to the frontier
    else if the path to w via f is shorter:
      update w’s shortest path length

shortest-paths(4)
Empty => done!
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Dĳkstra’s Shortest Paths: 
Pseudocode

S = { }; F = {v};  v.d = 0;
while  (F ≠ {})  {
    f = node in F with min d value;
         Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
      }
   }
}

Initialize Settled to empty
Initialize Frontier to the start node
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While the frontier isn’t empty:
  move node f with smallest d 
   from F to S
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Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:
  move node f with smallest d 
   from F to S
  For each neighbor w of f:

  if we’ve never seen w before:
    set its path length
    add it to frontier



S = { }; F = {v};  v.d = 0;
while  (F ≠ {})  {
    f = node in F with min d value;
         Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
      }
   }
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Dĳkstra’s Shortest Paths: 
Pseudocode

For each neighbor w of f:
  if we’ve never seen w before:
    set its path length
    add it to frontier

  else if path to w via f is shorter:
      update w’s shortest path length  

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:
  move node f with smallest d 
   from F to S
  



What if we want to know 
the shortest path?

• At termination: for each 
reachable node n, n.d 
stores the length of the 
shortest path from v to n.


• We didn’t keep track of 
how to get from v to n!

S = { }; F = {v};  v.d = 0;
while  (F ≠ {})  {
    f = node in F with min d value;
         Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
      }
   }
}



What if we want to know 
the shortest path?

Each node could store the 
full path, but that would be 
expensive to keep updated.


Strategy: maintain a 
backpointer at each node 
pointing to the previous 
node in the shortest path.

S = { }; F = {v};  v.d = 0; v.bp = null;
while  (F ≠ {})  {
    f = node in F with min d value;
    Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            w.bp = f;
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
            w.bp = f
      }
   }
}



What if we want to know 
the shortest path? Example

Strategy: maintain a 
backpointer at each node 
pointing to the previous 
node in the shortest path.

S = { }; F = {v};  v.d = 0; v.bp = null;
while  (F ≠ {})  {
    f = node in F with min d value;
    Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            w.bp = f;
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
            w.bp = f
      }
   }
}
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S = { }; F = {v};  v.d = 0; v.bp = null;
while  (F ≠ {})  {
    f = node in F with min d value;
    Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            w.bp = f;
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
            w.bp = f
      }
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}
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Questions?



The next slide very 
important.



Implementing Dĳkstra 
Efficiently (A4)

S = { }; F = {v};  v.d = 0; v.bp = null;
while  (F ≠ {})  {
    f = node in F with min d value;
    Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            w.bp = f;
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
            w.bp = f
      }
   }
}

1. Store Frontier in a min-heap 
priority queue with d-values as 
priorities.


2. To efficiently iterate over 
neighbors, use an adjacency 
list graph representation.


3. Could store w.d and w.bp in 
Node class; in A4, we use a 
HashMap<Node,PathData>


4. No need to explicitly store 
Settled or Unexplored sets: 
  a node is in S or F iff it is in 
  the map.
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Proof of Correctness
• Dijkstra’s algorithm is greedy: it makes a 

sequence of locally optimal moves, which 
results in the globally optimal solution.


• Most algorithms don’t work like this - need to prove 
that it results in the global optimum.


• Specifically: It is not obvious that there 
cannot still be a shorter path to the Frontier 
node with smallest d-value.



Proof of Correctness: 
Invariant

The while loop in Dijkstra’s algorithm maintains a 3-
part invariant:


1. For a Settled node s, a shortest path from v to s contains only 
settled nodes and s.d is length of shortest v -> s path. 

2. For a Frontier node f, at least one v -> f path contains only 
settled nodes (except perhaps for f) and f.d is the length of the 
shortest such path 

3. All edges leaving S go to F (or: no edges from S to Unexplored)

fv

Frontier 
F

Settled 
S

Unexplored

f



Proof of Correctness: 
Theorem

Theorem: For a node f in the Frontier 
with minimum d value (over all nodes in 
the Frontier), f.d is the shortest-path 
distance from v to f. 
Proof: Show that any other path from v 
to if has length >= f.d

S = { }; F = {v};  v.d = 0;
while  (F ≠ {})  {
    f = node in F with min d value;
         Remove f from F, add it to S;
   for each neighbor w of f {
       if (w not in S or F) {
            w.d =  f.d + weight(f, w);
            add w to F;
      } else if (f.d+weight(f,w) < w.d) {
            w.d = f.d+weight(f,w);
      }
   }
}

Case 1: if v is in F, then S is empty and v.d = 0, which is trivially the 
shortest distance from v to v.
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Proof of Correctness: 
Invariant Maintenance
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from v to s contains only settled nodes 
and s.d is length of shortest v -> s path.
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At initialization: 

1. S is empty; trivially true.

2. v.d = 0, which is the shortest path.

3. S is empty, so no edges leave it.
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At each iteration:

1. Theorem says f.d is the shortest path, so it can safely move to S

2. Updating w.d maintains Part 2 of the invariant.

3. Each neighbor is either already in F or gets moved there.


