
CSCI 241
Lecture 21

Dijkstra’s Single-Source Shortest Paths Algorithm

Announcements

Announcements
• Lab 8 is out.

Announcements
• Lab 8 is out.

• A4 is out

• I’ll post full slides for Dijkstra even if we don't get
through all of them today.

• I'll also post two sample graphs for you to run the
algorithm on.

Announcements
• Lab 8 is out.

• A4 is out

• I’ll post full slides for Dijkstra even if we don't get
through all of them today.

• I'll also post two sample graphs for you to run the
algorithm on.

• Quiz 5 is graded, video is posted.

Goals
• Know how to determine whether a graph is connected

• Know the definition of connected components.

• Know what a weighted graph is.

• Understand the intuition behind Dijkstra’s shortest paths

algorithm.

• Be able to execute Dijkstra’s algorithm manually on a

graph.

• Be prepared to implement Dijkstra's algorithm efficiently.

• Know how to augment the algorithm to keep

backpointers in order to reconstruct the sequence of
nodes in a shortest path.

Graph Terminology
• A graph is connected if there is a

path between every pair of nodes.

• A directed graph is strongly connected if there
is a directed path between all pairs of nodes.

• A directed graph is weakly connected if the
graph becomes connected when all edges are
converted to undirected edges.

• A graph can have multiple connected
components: subsets of the vertices
and edges that are connected.

A

B C

DE

Not strongly
connected
Not weakly
connected

Weighted Graphs
• Like a normal graph, but edges have weights.

• Formally: a graph (V,E) with an accompanying weight
function w: E -> ℝ

• may be directed or undirected.

• Informally: label edges with their weights

• Representation:

• adjacency list - store weight of (u,v) with v the node in u’s list

• adjacency matrix - store weight in matrix entry for (u,v)

A

B C

D
E

6 6
5

3
4

Paths in Weighted Graphs
• The length (or weight) of a path in a weighted

graph is the sum of the edge weights along
that path.

3

2

6

5

4

1
2

2

33
1

5

• ABCD: What’s the
length of the shortest
path from 3 to 6?

A. 7

B. 8

C. 9

D. 10

• Perform a breadth-first search (that’s it!)

• BFS visits nodes in order of “hop distance”,
or path length!

• BFS(1):

Computing Shortest Paths
in Unweighted Graphs

3

2

6

5

4

1

• Perform a breadth-first search (that’s it!)

• BFS visits nodes in order of “hop distance”,
or path length!

• BFS(1):

Computing Shortest Paths
in Unweighted Graphs

3

2

6

5

4

1

0

• Perform a breadth-first search (that’s it!)

• BFS visits nodes in order of “hop distance”,
or path length!

• BFS(1):

Computing Shortest Paths
in Unweighted Graphs

3

2

6

5

4

1

0 1

1

• Perform a breadth-first search (that’s it!)

• BFS visits nodes in order of “hop distance”,
or path length!

• BFS(1):

Computing Shortest Paths
in Unweighted Graphs

3

2

6

5

4

1

0 1

1

22

• Perform a breadth-first search (that’s it!)

• BFS visits nodes in order of “hop distance”,
or path length!

• BFS(1):

Computing Shortest Paths
in Unweighted Graphs

3

2

6

5

4

1

0 1

1

223

Computing Shortest Paths
in Weighted Graphs

BFS doesn’t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1)

3

2

6

5

4

1
2

2

3
3

1

5

Computing Shortest Paths
in Weighted Graphs

BFS doesn’t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1)

3

2

6

5

4

1
2

2

3
3

1

5

0

Computing Shortest Paths
in Weighted Graphs

BFS doesn’t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1)

3

2

6

5

4

1
2

2

3
3

1

5

0 2

2

Computing Shortest Paths
in Weighted Graphs

BFS doesn’t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1)

3

2

6

5

4

1
2

2

3
3

1

5

0 2

2

75

Computing Shortest Paths
in Weighted Graphs

BFS doesn’t visit nodes in order of shortest
path length:

(edge weights)
(shortest path length from node 1)

3

2

6

5

4

1
2

2

3
3

1

5

0 2

2

75
6!

Dĳkstra’s Shortest Paths:
Subpaths

• Fact: subpaths of shortest paths are shortest paths

• Example: if the shortest path from u to w goes
through v, then

• the part of that path from u to v is the shortest
path from u to v.

• if there were some better path u..v, that would
also be part of a better way to get from u to w.

u v w… …

Dĳkstra’s Shortest Paths:
Subpaths

• Fact: subpaths of shortest paths are shortest
paths

• Consequence: a candidate shortest path
from start node s to some node v’s neighbor
w is the shortest path from to v + the edge
weight from v to w.

u v w…
shortest path u..v = v.d

wt(v,w)

Dĳkstra’s Shortest Paths:
Intuition

• Intuition: explore nodes like BFS, but in order of path length
instead of number of hops.

• There are three kinds of nodes:

• Settled - nodes for which we know the actual shortest path.

• Frontier - nodes that have been visited but we don’t
necessarily have their actual shortest path

• Unexplored - all other nodes.

• Each node n keeps track of n.d, the length of the shortest
known known path from start.

• We may discover a shorter path to a frontier node than the one
we’ve found already - if so, update n.d.

Dĳkstra’s Shortest Paths:
Cartoon

settled frontier unexplored

Before:

During:

After:

Dĳkstra’s Shortest Paths:
Cartoon

settled frontier unexplored

Before:

During:

After:

S

Dĳkstra’s Shortest Paths:
Cartoon

settled frontier unexplored

Before:

During:

After:

S

S

Dĳkstra’s Shortest Paths:
Cartoon

settled frontier unexplored

Before:

During:

After:

S

S

S

unreachable nodes

Dĳkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

Dĳkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

s f w…
f.d

wt(f,w)

Dĳkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

s f w…
f.d

s f w…

u…
w.d = u.d + wt(u,w)

settled

wt(f,w)

Dĳkstra’s Shortest Paths:
High-Level Algorithm

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

s f w…
f.d

s f w…

u…
w.d = u.d + wt(u,w)

f.d + wt(f,w)

settled
u.d + wt(u,w)

wt(f,w)

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 ?

1 ?

2 ?

3 ?

4 ?

Best

known

distances:

Settled set:

Frontier set:

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 ?

1 ?

2 ?

3 ?

4 0

Best

known

distances:

Settled set: {}

Frontier set: {4}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 ?

1 ?

2 ?

3 ?

4 0

Best

known

distances:

Settled set: {4}

Frontier set: {}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 4  

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 2

1 ?

2 ?

3 ?

4 0

Best

known

distances:

Settled set: {4}

Frontier set: {0}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 4  
w: 0

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 2

1 ?

2 ?

3 ?

4 0

Best

known

distances:

Settled set: {4, 0}

Frontier set: {}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 0

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 2

1 5

2 ?

3 ?

4 0

Best

known

distances:

Settled set: {4, 0}

Frontier set: {1}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 0  
w: 1

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 2

1 5

2 6

3 ?

4 0

Best

known

distances:

Settled set: {4, 0}

Frontier set: {1, 2}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 0  
w: 2

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 2

1 5

2 6

3 8

4 0

Best

known

distances:

Settled set: {4, 0, 1}

Frontier set: {2}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 1

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 2

1 5

2 6

3 8

4 0

Best

known

distances:

Settled set: {4, 0, 1}

Frontier set: {2, 3}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 1  
w: 3

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 2

1 5

2 6

3 8

4 0

Best

known

distances:

Settled set: {4, 0, 1, 2}

Frontier set: {3}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

f: 2

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 2

1 5

2 6

3 7

4 0

Best

known

distances:

Settled set: {4, 0, 1, 2}

Frontier set: {3}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)

2.d + wt(2,3) < 3.d
7 < 8

f: 2
w: 3

Dĳkstra’s Shortest Paths:
Execution

3

2

0

4

1

2 4

4 1

3
3

Node d

0 2

1 5

2 6

3 7

4 0

Best

known

distances:

Settled set: {4, 0, 1, 2, 3}

Frontier set: {}

Initialize Settled to empty
Initialize Frontier to the start node
While the frontier isn’t empty:
 move the node f with smallest d from F to S
 For each neighbor w of f:
 if we’ve never seen w before:
 set its path length to f.d + wt(f,w)
 add w to the frontier
 else if the path to w via f is shorter:
 update w’s shortest path length

shortest-paths(4)
Empty => done!

f: 3

Dĳkstra’s Shortest Paths:
Pseudocode

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Initialize Settled to empty
Initialize Frontier to the start node

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Initialize Settled to empty
Initialize Frontier to the start node

Dĳkstra’s Shortest Paths:
Pseudocode

While the frontier isn’t empty:
 move node f with smallest d
 from F to S

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Dĳkstra’s Shortest Paths:
Pseudocode

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:
 move node f with smallest d
 from F to S
 For each neighbor w of f:

 if we’ve never seen w before:
 set its path length
 add it to frontier

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Dĳkstra’s Shortest Paths:
Pseudocode

For each neighbor w of f:
 if we’ve never seen w before:
 set its path length
 add it to frontier

 else if path to w via f is shorter:
 update w’s shortest path length

Initialize Settled to empty
Initialize Frontier to the start node

While the frontier isn’t empty:
 move node f with smallest d
 from F to S

What if we want to know
the shortest path?

• At termination: for each
reachable node n, n.d
stores the length of the
shortest path from v to n.

• We didn’t keep track of
how to get from v to n!

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

What if we want to know
the shortest path?

Each node could store the
full path, but that would be
expensive to keep updated.

Strategy: maintain a
backpointer at each node
pointing to the previous
node in the shortest path.

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

What if we want to know
the shortest path? Example

Strategy: maintain a
backpointer at each node
pointing to the previous
node in the shortest path.

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

3

2

0

4

1

2 4

4 1

3
3

shortest-paths(4)

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

3

2

0

4

1

2 4

4 1

3
3

shortest-paths(4)

Node d bp

0

1

2

3

4

S:

F:

Questions?

The next slide very
important.

Implementing Dĳkstra
Efficiently (A4)

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

1. Store Frontier in a min-heap
priority queue with d-values as
priorities.

2. To efficiently iterate over
neighbors, use an adjacency
list graph representation.

3. Could store w.d and w.bp in
Node class; in A4, we use a
HashMap<Node,PathData>

4. No need to explicitly store
Settled or Unexplored sets: 
 a node is in S or F iff it is in 
 the map.

Implementing Dĳkstra
Efficiently (A4)

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

1. Store Frontier in a min-heap
priority queue with d-values
as priorities.

2. To efficiently iterate over
neighbors, use an adjacency
list graph representation.

3. Could store w.d and w.bp in
Node class; in A4, we use a
HashMap<Node,PathData>

4. No need to explicitly store
Settled or Unexplored sets: 
 a node is in S or F iff it is in 
 the map.

Implementing Dĳkstra
Efficiently (A4)

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

1. Store Frontier in a min-heap
priority queue with d-values as
priorities.

2. To efficiently iterate over
neighbors, use an adjacency
list graph representation.

3. Could store w.d and w.bp in
Node class; in A4, we use a
HashMap<Node,PathData>

4. No need to explicitly store
Settled or Unexplored sets: 
 a node is in S or F iff it is in 
 the map.

Implementing Dĳkstra
Efficiently (A4)

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

1. Store Frontier in a min-heap
priority queue with d-values as
priorities.

2. To efficiently iterate over
neighbors, use an adjacency
list graph representation.

3. Could store w.d and w.bp in
Node class; in A4, we use a
HashMap<Node,PathData>

4. No need to explicitly store
Settled or Unexplored sets: 
 a node is in S or F iff it is in 
 the map.

Implementing Dĳkstra
Efficiently (A4)

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

1. Store Frontier in a min-heap
priority queue with d-values as
priorities.

2. To efficiently iterate over
neighbors, use an adjacency
list graph representation.

3. Could store w.d and w.bp in
Node class; in A4, we use a
HashMap<Node,PathData>

4. No need to explicitly store
Settled or Unexplored sets: 
 a node is in S or F iff it is in 
 the map.

Implementing Dĳkstra
Efficiently (A4)

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

4. No need to explicitly store
Settled or Unexplored sets: 
 w is in S or F <=> it is in the map.

The only time we need to check
membership in S is here.

Implementing Dĳkstra
Efficiently (A4)

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

4. No need to explicitly store
Settled or Unexplored sets: 
 w is in S or F <=> it is in the map.

If w is not in S or F,

it must be in Unexplored.

The only time we need to check
membership in S is here.

Implementing Dĳkstra
Efficiently (A4)

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

4. No need to explicitly store
Settled or Unexplored sets: 
 w is in S or F <=> it is in the map.

If w is not in S or F,

it must be in Unexplored.

The only time we need to check
membership in S is here.

therefore,

we haven’t found a path to it.

Implementing Dĳkstra
Efficiently (A4)

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

4. No need to explicitly store
Settled or Unexplored sets: 
 w is in S or F <=> it is in the map.

If w is not in S or F,

it must be in Unexplored.

The only time we need to check
membership in S is here.

therefore,

we haven’t found a path to it.

therefore,

it has no d or bp yet.

Implementing Dĳkstra
Efficiently (A4)

S = { }; F = {v}; v.d = 0; v.bp = null;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 w.bp = f;
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 w.bp = f
 }
 }
}

4. No need to explicitly store
Settled or Unexplored sets: 
 w is in S or F <=> it is in the map.

If w is not in S or F,

it must be in Unexplored.

The only time we need to check
membership in S is here.

therefore,

we haven’t found a path to it.

therefore,

it has no d or bp yet.

therefore,

it isn’t in the map!

Proof of Correctness
• Dijkstra’s algorithm is greedy: it makes a

sequence of locally optimal moves, which
results in the globally optimal solution.

• Most algorithms don’t work like this - need to prove
that it results in the global optimum.

• Specifically: It is not obvious that there
cannot still be a shorter path to the Frontier
node with smallest d-value.

Proof of Correctness:
Invariant

The while loop in Dijkstra’s algorithm maintains a 3-
part invariant:

1. For a Settled node s, a shortest path from v to s contains only
settled nodes and s.d is length of shortest v -> s path. 

2. For a Frontier node f, at least one v -> f path contains only
settled nodes (except perhaps for f) and f.d is the length of the
shortest such path 

3. All edges leaving S go to F (or: no edges from S to Unexplored)

fv

Frontier
F

Settled
S

Unexplored

f

Proof of Correctness:
Theorem

Theorem: For a node f in the Frontier
with minimum d value (over all nodes in
the Frontier), f.d is the shortest-path
distance from v to f. 
Proof: Show that any other path from v
to if has length >= f.d

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 1: if v is in F, then S is empty and v.d = 0, which is trivially the
shortest distance from v to v.

Proof of Correctness:
Theorem

Theorem: For a node f in the Frontier
with minimum d value (over all nodes in
the Frontier), f.d is the shortest-path
distance from v to f. 
Proof: Show that any other path from v
to if has length >= f.d

fv

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 2: v is in S. Part 2 of the invariant says:

• f.d is the length of the shortest path from v to f containing all

settled nodes except f, and f.d is the length of such a path.

Proof of Correctness:
Theorem

Theorem: For a node f in the Frontier
with minimum d value (over all nodes in
the Frontier), f.d is the shortest-path
distance from v to f. 
Proof: Show that any other path from v
to if has length >= f.d

fv

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 2: v is in S. Part 2 of the invariant says:

• f.d is the length of the shortest path from v to f containing all

settled nodes except f, and f.d is the length of such a path.

Any other v-f path must either be longer or go through another
frontier node g then arrive at f:

Proof of Correctness:
Theorem

Theorem: For a node f in the Frontier
with minimum d value (over all nodes in
the Frontier), f.d is the shortest-path
distance from v to f. 
Proof: Show that any other path from v
to if has length >= f.d

fv

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 2: v is in S. Part 2 of the invariant says:

• f.d is the length of the shortest path from v to f containing all

settled nodes except f, and f.d is the length of such a path.

Any other v-f path must either be longer or go through another
frontier node g then arrive at f: fv g

Proof of Correctness:
Theorem

Theorem: For a node f in the Frontier
with minimum d value (over all nodes in
the Frontier), f.d is the shortest-path
distance from v to f. 
Proof: Show that any other path from v
to if has length >= f.d

fv

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Case 2: v is in S. Part 2 of the invariant says:

• f.d is the length of the shortest path from v to f containing all

settled nodes except f, and f.d is the length of such a path.

Any other v-f path must either be longer or go through another
frontier node g then arrive at f:

d.f <= d.g,

so that path cannot be shorter

fv g

Proof of Correctness:
Invariant Maintenance

1. For a Settled node s, a shortest path
from v to s contains only settled nodes
and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f
path contains only settled nodes (except
perhaps for f) and f.d is the length of the
shortest such path

3. All edges leaving S go to F (or: no edges
from S to Unexplored)

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

Proof of Correctness:
Invariant Maintenance

1. For a Settled node s, a shortest path
from v to s contains only settled nodes
and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f
path contains only settled nodes (except
perhaps for f) and f.d is the length of the
shortest such path

3. All edges leaving S go to F (or: no edges
from S to Unexplored)

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

At initialization:

1. S is empty; trivially true.

2. v.d = 0, which is the shortest path.

3. S is empty, so no edges leave it.

Proof of Correctness:
Invariant Maintenance

1. For a Settled node s, a shortest path
from v to s contains only settled nodes
and s.d is length of shortest v -> s path.

2. For a Frontier node f, at least one v -> f
path contains only settled nodes (except
perhaps for f) and f.d is the length of the
shortest such path

3. All edges leaving S go to F (or: no edges
from S to Unexplored)

S = { }; F = {v}; v.d = 0;
while (F ≠ {}) {
 f = node in F with min d value;
 Remove f from F, add it to S;
 for each neighbor w of f {
 if (w not in S or F) {
 w.d = f.d + weight(f, w);
 add w to F;
 } else if (f.d+weight(f,w) < w.d) {
 w.d = f.d+weight(f,w);
 }
 }
}

At each iteration:

1. Theorem says f.d is the shortest path, so it can safely move to S

2. Updating w.d maintains Part 2 of the invariant.

3. Each neighbor is either already in F or gets moved there.

