

Announcements

* Quiz today - same as usual

« A4: Dijkstra’s Single Source Shortest Paths
— We’ll cover Dijkstra’s algorithm Wednesday
— Assignment released Wednesday
— Due a week later, Wednesday 6/3

. %afw @m\ﬂ% op@%ﬁiw\ ruviHwg - see. end oF edesdey '
<) deg.

Goals

* Understand and be able to implement
graph traversal/search algorithms:

— Depth-first search
— Breadth-first search

Look, a graph!

Look, a graph!

Look, a graph!

Look, a graph! .

DAG

« A commonly-used flavor of graph:
Directed Acyclic Graph (DAG).

« Definition: A graph that is directed and
acyclic.

Breaking DAG

Which of the following two graphs are DAGs?

Directed Acyclic
Graph

Graph 1: Graph 2:

—_’\
> 1 2 3

)I—>P>ﬂ L e T TS

» @ Q\ 2 0 0 0

Breaking DAG

DA
%@L

Depth-First Search

*Given a graph and one of its nodes@
(say node 1 below)

Depth-First Search

*Given a graph and one of its nodes u
(say node 1 below)

*We want to “visit” each node reachable
from u
(nodes 1, 0, 2, 3, 5)

Depth-First Search

*Given a graph and one of its nodes u
(say node 1 below)

*We want to “visit” each node reachable
from u
(nodes 1, 0, 2, 3, 5) There are many

paths to some
nodes.

How do we visit all
nodes efficiently,
without doing extra
work?

Depth-First Search

boolean[] visited;

Depth-First Search

boolean[] visited;
*Node u is visited means: visited[u] is true

eans to: set fisited[u] to true

Depth-First Search

boolean[] visited;

*Node u is visited means: visited[u] is true

*To visit u means to: set visited[u] to true

v is explorable from u if there is a path (u, ..., v)

N\oj

in which all nodes of the path are unvisited.

Depth-First Search

boolean[] visited;

*Node u is visited means: visited[u] is true
*To visit u means to: set visited[u] to true

v is explorable from u if there is a path (u, ...,

V)
in which all nodes of the path are unvisited. Suppose all nodes
are unvisited.

Depth-First Search

boolean[] visited;

*Node u is visited means: visited[u] is true
*To visit u means to: set visited[u] to true

v is explorable from u if there is a path (u, ...,

V)
in which all nodes of the path are unvisited. Suppose all nodes
are unvisited.

Nodes explorable
from node 1:
{1, 0, 2, 3, 5}

Depth-First Search

boolean[] visited;

*Node u is visited means: visited[u] is true
*To visit u means to: set visited[u] to true
v is explorable from u if there is a path (u, ...,
V)
in which all nodes of the path are unvisited.Suppose all nodes
are unvisited.

Nodes explorable
from node 1:
{1, 0, 2, 3, 5}

Nodes explorable
from 4: {4, 5, 6}

Depth-First Search

boolean[] visited;

*Node u is visited means: visited[u] is true
*To visit u means to: set visited[u] to true

v is explorable from u if there is a path (u, ...,

V) .
in which all nodes of the path are unvisited. Green: visited
Blue: unvisited

Depth-First Search

boolean[] visited;

*Node u is visited means: visited[u] is true

*To visit u means to: set visited[u] to true

v is explorable from u if there is a path (u, ...,
V)

in which all nodes of the path are unvisited. Green: visited
Blue: unvisited

Nodes explorable
from node 1:
L5 19, 5

Depth-First Search

boolean[] visited;

*Node u is visited means: visited[u] is true
*To visit u means to: set visited[u] to true
v is explorable from u if there is a path (u, ...,
V) . .
in which all nodes of the path are unvisited. Green: visited
Blue: unvisited

Nodes explorable
from node 1:
L5 19, 5

Nodes explorable
from 4: none

Depth-First Search

boolean[] visited;
*Node u is visited means: visited[u] is true
*To visit u means to: set visited[u] to true

v is explorable from u if there is a path (u, ...,

V) .
in which all nodes of the path are unvisited. Green: visited
Blue: unvisited

Nodes explorable

from node 1:

{1, 0, 5}

Nodes explorable
Not even 4 itself, because it’s already been u,s}ﬂ;rfm 4: none

Depth-First Search

/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */

public static void dfs(int u) {

Depth-First Search

/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */

public static void dfs(int u) {

Start

Depth-First Search

/** Visit all nodes that are
explorable from u. Precondition: u is

unvisited. */ Let u be 1

public static void dfs(int u) { The nodes
explorable from 1
are1,0, 2, 3,5

Start End

Depth-First Search

/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */

public static void dfs(int u) {

Let u be 1

The nodes
explorable from 1
are1,0, 2, 3,5

Depth-First Search

/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */

public static void dfs(int u) {
visited[u] = true;

Let u be 1

The nodes
explorable from 1
are1,0, 2, 3,5

Depth-First Search

/** Visit all nodes that are Let U be 1
explorable from u. Precondition: u is et ube

.. . (visited)
unvisited. */

public static void dfs(int u) { The nodes to be
visited[u] = true; visited are 0, 2, 3,
5

Depth-First Search

/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */

public static void dfs(int u) {
visited[u] = true;

Let u be 1
(visited)

The nodes to be
visited are 0, 2, 3,
5

Have to do DFS on
all unvisited
neighbors of u!

Depth-First Search

/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */

public static void dfs(int u) {
visited[u] = true;
for all edges (u, v) leaving u:
if v is unvisited then dfs(v);

Let u be 1
(visited)

The nodes to be
visited are 0, 2, 3,
5

Have to do DFS on
all unvisited
neighbors of u!

Depth-First Search

/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */

public static void dfs(int u) {
visited[u] = true;
for all edges (u, v) leaving u:
if v is unvisited then dfs(v);

Let u be 1
(visited)

The nodes to be
visited are 0, 2, 3,
5

Have to do DFS on
all unvisited
neighbors of u!

Depth-First Search

/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */

public static void dfs(int u) {
visited[u] = true;
for all edges (u, v) leaving u:
if v is unvisited then dfs(v);

Suppose the for
loop visits
neighbors in
numerical order.
Then dfs(1) visits
the nodes in this
order: 1 ...

Depth-First Search

/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */

public static void dfs(int u) {
visited[u] = true;
for all edges (u, v) leaving u:
if v is unvisited then dfs(v);

Suppose the for
loop visits
neighbors in
numerical order.
Then dfs(1) visits
the nodes in this
order: 1, O ...

Depth-First Search

/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */

public static void dfs(int u) {
visited[u] = true;
for all edges (u, v) leaving u:
if v is unvisited then dfs(v);

Suppose the for
loop visits
neighbors in
numerical order.
Then dfs(1) visits
the nodes in this
order: 1, 0, 2 ...

Depth-First Search

/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */

public static void dfs(int u) {
visited[u] = true;
for all edges (u, v) leaving u:
if v is unvisited then dfs(v);

Suppose the for
loop visits
neighbors in
numerical order.
Then dfs(1) visits
the nodes in this
order: 1, 0, 2, 3 ...

Depth-First Search

/** Visit all nodes that are

explorable from u. Precondition: u is l .
nvisited. */ 00P VISItS

. ‘ neighbors in

public static void dfs(int u) { numerical order.
visited[u] = true; Then dfs(1) visits
- . the nodes in this
for.all ?dges .(L.J, v) leaving u: sl i 6,7 3, 5
if v is unvisited then dfs(v);

Suppose the for

Depth-First Sear

/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */

public static void dfs(int u) {

visited[u] = tru@e\ o))

for all edges (u, v) leaving u: OC€>

if v is unvisited then dfs(v);
} oY)

Suppose_n nodes are explorable along e

e e —— Olnee,
« Worst-case space? ¢—= C)/Q)ﬂ)

LT E 2o

Depth-First Search

/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */

public static void dfs(int u) {
visited[u] = true;
for all edges (u, v) leaving u:
if v is unvisited then dfs(v);

}

Suppose n nodes are explorable along e
edges (in total). What is

« Worst-case runtime? O(n+e)

« Worst-case space? O(n)

Depth-First Search

/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */

public static void dfs(int u) {
visited[u] = true;
for all edges (u, v) leaving u:
if v is unvisited then dfs(v);

That’s all there is
to basic DFS. You
may have to
change it to fit a
particular
situation.

Depth-First Search

/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */

That’s all there is
to basic DFS. You

may have to
public static void dfs(int u) { change it to fit a
visited[u] = true; particular
situation.

for all edges (u, v) leaving u:
if v is unvisited then dfs(v);

}

Example: Use different way (other than array
visited) to know whether a node has been
visited

Depth-First Search

/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */

public static void dfs(int u) {
visited[u] = true;
for all edges (u, v) leaving u:
if v is unvisited then dfs(v);

}

Example: Use different way (other than array
visited) to know whether a node has been

vicitad

Example: We really haven’t said what data
structures are used to implement the graph

That’s all there is
to basic DFS. You
may have to
change it to fit a
particular
situation.

Depth-First Search

/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */

That’s all there is
to basic DFS. You

. . . _ may have to
public static void dfs(int u) { change it to fit a
visited[u] = true; particular
for all edges (u, v) leaving u: Sl
if v is unvisited then dfs(v); If you don’t have
} this spec and you
Example: Use different way (other than array d? someth1:ng
visited) to know whether a node has been different, it’s
vieitad . probably wrong.
Example: We really haven’t said what data |

structures are used to implement the graph

Depth-First Search in OO fashion

public class Node { Each node of the
boolean visited; graph is an object
List<Node> neighbors; of type Node

Depth-First Search in OO fashion

public class Node { Each node of the
boolean visited; graph is an object
List<Node> neighbors; of type Node

/** Visit all nodes that are explorable
* from u. Precondition: u is unvisited */

public void dfs() {
visited= true;

Depth-First Search in OO fashion

public class Node { Each node of the
boolean visited; graph is an object
List<Node> neighbors; of type Node

/** Visit all nodes that are explorable
* from u. Precondition: u is unvisited */

public void dfs() {

.. No need for a
visited= true;

parameter. The
object is the
node.

Depth-First Search in OO fashion

public class Node { Each node of the
boolean visited; graph is an object
List<Node> neighbors; of type Node

/** Visit all nodes that are explorable
“from.u..Precondition: u is unvisited */

public void dfs() {
visited= true;
for (Node n: neighbors) {
if (In.visited) n.dfs();
3

}

No need for a
parameter. The
object is the
node.

Depth-First Search in OO fashion

public class Node { Each node of the
boolean visited; graph is an object
List<Node> neighbors; of type Node

/** Visit all nodes that are explorable
* from u. Precondition: u is unvisited */

public void dfs() {
visited= true;
for (Node n: neighbors) {
if (In.visited) n.dfs();
3

}

No need for a
parameter. The
object is the
node.

}

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int nodelD) {

Stack s = (nodelD); // Not Java!
// inv: all nodes that have to be visited are

// explorable from some node in s
while () {

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int nodelD) {

Stack s = (nodelD); // Not Java!

// inv: all nodes that have to be visited are
// explorable from some node in s
while (s ijs not empty) {

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int nodelD) {

Stack s = (nodelD); // Not Java!

// inv: all nodes that have to be visited are

// explorable from some node in s

while (s is not empty) {

<U =s.popl); // Remove top stack node, put in u
if (u has not been visited) {

—

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int nodelD) {

Stack s = (nodelD); // Not Java!
// inv: all nodes that have to be visited are
// explorable from some node in s
while (s is not empty) {
u=s.pop(); // Remove top stack node, put in u

if li has not been visited) {

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int nodelD) {

Stack s = (nodelD); // Not Java!

// inv: all nodes that have to be visited are
// explorable from some node in s
while (s ijs not empty) {

u=s.pop(); // Remove top stack node, put in u
if (u has not been visited) {

visit u;
for each edge (u, v) leaving u:
s.push(v);

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int nodelD) {

Stack s = (nodelD); // Not Java!

// inv: all nodes that have to be visited are
// explorable from some node in s
while (s is not empty) {

u=s.pop(); // Remove top stack node, put in u
if (u has not been visited) {

visit u;
for each edge (u, v) leaving u:
s.push(v);

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int nodelD) {

Stack s = (nodelD); // Not Java!

// inv: all nodes that have to be visited are
// explorable from some node in s
while (s is not empty) {

u=s.pop(); // Remove top stack node, put in u
if (u has not been visited) {

visit u;
for each edge (u, v) leaving u:
s.push(v);

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int nodelD) {

Stack s = (nodelD); // Not Java!

// inv: all nodes that have to be visited are
// explorable from some node in s
while (s is not empty) {

u=s.pop(); // Remove top stack node, put in u
if (u has not been visited) {

visit u;
for each edge (u, v) leaving u:
s.push(v);

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

public static void dfs(int u) {
Stack s= (u); Call
while (s is not empty) { dfs(1)
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);

Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

public static void dfs(int u) {
o Stack s Call

while (s is not empty) { dfs(1)
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
3
3
3

1
Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

ublic static void dfs(int u
P Stack s= (U); (3 Call lteration O
while (s is not empty) { dfs(1)
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
3
3
3
1

Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

public static void dfs(int u) {
Stack s= (u); Call
while (s is not empty) { dfs(1)
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);

Iteration 0

Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

public static void dfs(int u) {
Stack s= (u); Call
while (s is not empty) { dfs(1)
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);

Iteration 0

Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

P ety ABENEWL ol | teration 0
while (s is not empty) { dfs(1)
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
3
5 0
5 2
5

Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

P et v ASENEW L ol | teration 1
while (s is not empty) { dfs(1)
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
3
5 0
5 2
5

Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

P et v ASENEW L ol | teration 1
while (s is not empty) { dfs(1)
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
3
3
5 2
5

Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

P et v ASENEW L ol | teration 1
while (s is not empty) { dfs(1)
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
3
3
5 2
5

Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

P bty BN call | iteration 2
while (s is not empty) { dfs(1)
—~ U= s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
3
3
5 2
5

Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

ublic static void dfs(int u
P Stack s= (U); (3 Call lteration 2
while (s is not empty) { dfs(1)
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
3
3
3
5

Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

ublic static void dfs(int u
P Stack s= (U); (3 Call lteration 2
while (s is not empty) { dfs(1)
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
3
3
3
5

Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

pubg‘::azf(astlc(:;);ld dfs(int u) { Call teration 2
while (s is not empty) { dfs(1)
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
3
J 3
} 5
5

Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {

Stack s= (u); Call I[teration 2
while (s is not empty) { dfs(1)
u= s.pop(); Yes, 5 is put on the
if (u has not been visited) { stack twice, once for
visit u; h edoe to it. It
for each edge (u, v) leaving u: ea}c < g.e' O IL
s.push(v); will be visited only
1 once.
3 } 3
5

5
Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

pubg‘::azf(astlc(:;);ld dfs(int u) { Call teration 3
while (s is not empty) { dfs(1)
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
3
J 3
} 5
5

Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

P et v ABINEWL call | iteration 3
while (s is not empty) { dfs(1)
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
3
3
} 5
5

Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

P et v ABINEWL call | iteration 3
while (s is not empty) { dfs(1)
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
3
3
} 5
5

Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

pubg‘::azf(astlc(:;);ld dfs(int u) { Call teration 3
while (s is not empty) { dfs(1)
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
3
J 5
} 5
5

Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

pUbgfazf(a:lc(;;]d dfs(int) ¢ Call lteration 4
while (s is not empty) { dfs(1)
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
3
3
} 5
5

Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

pUbgfazf(a:lc(;;]d dfs(int) ¢ Call lteration 4
while (s is not empty) { dfs(1)
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
3
3
} 5
5

Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

pUbgfazf(a:lc(;;]d dfs(int) ¢ Call lteration 4
while (s is not empty) { dfs(1)
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
3
3
} 5
5

Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

public static void dfs(int u) { _
Stack s= (u); Call [teration 5
while (s is not empty) { dfs(1)
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);
3
N
3
5

Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

public static void dfs(int u) {
Stack s= (u); Call
while (s is not empty) { dfs(1)
u=s.pop();
if (u has not been visited) {
T visit u;
for each edge (u, v) leaving u:
s.push(v);

[teration 6

Stack s

Depth-First Search written iteratively

/** Visit all nodes explorable from u. Pre: u is unvisited. */

public static void dfs(int u) {
Stack s= (u);
while (s is hot empty) {
u=s.pop();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);

That’s DFS!

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {

Stack s= (u); // Not Javal

// inv: all nodes that have to be visited are
// explorable from some node in s
while (s is not empty) {

u=s.pop(); // Remove top stack node, put in u
if (u has not been visited) {

visit u;
for each edge (u, v) leaving u:
s.push(v);

That’s DFS!

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {

Stack s= (u); // Not Javal

// inv: all nodes that have to be visited are
// explorable from some node in s
while (s ijs not empty) {

u=s.pop(); // Remove top stack node, put in u
if (u has not been visited) {

visit u;
for each edge (u, v) leaving u:
s.push(v);

} Want to see a magic trick?

Depth-First Search

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
Stack s= (u); // Not Javal
// inv: all nodes that have to be visited g
/1] explorable from some node in s [
while (s is not empty) {
u=s.pop(); // Remove top stack ng ; .
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
s.push(v);

Depth-First Search

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
Stack s= (u); // Not Javal
// inv: all nodes that have to be visited a
// explorable from some node in s
while (s is not empty) {

u=s.pop(); // Remove top stack node, pu m'u
if (u has not been visited) {

visit u;
for each edge (u, v) leaving u:
s.push(v);

@irst Search

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void(Bfs(int u) {

q= (u); // Not Java!

// inv: all nodes that have to be visited are
// explorable from some node in s

while (q is not empty) {
u= q.popFirst(); // Remove first node in queue, put

inu
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
g.append(v); // Add to end of queue
3
3

Breadth-First Search

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) {

Queue g= (u); // Not Java!

// inv: all nodes that have to be visited are

// explorable from some node in s

while (q is not empty) {
u= q.popFirst(); // Remove first node in queue, put

inu
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
g.append(v); // Add to end of queue
3
3

Breadth-First Search

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) { Call
a

Queue g= (u);

while q is not empty) { bfs(1)
u= q.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
qd.append(v);

Queue g

Breadth-First Search

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) {
Queue g= (u); Call
while q is not empty) { bfs(1)
u= q.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
qd.append(v);

Queue g

Breadth-First Search

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) { _
Queue q= (u); Call lteration O
while q is not empty) { bfs(1)
u= q.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
qd.append(v);

Queue g

Breadth-First Search

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) { _
Queue q= (u); Call lteration O
while q is not empty) { bfs(1)
u= q.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
qd.append(v);

Queue g

Breadth-First Search

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) { _
Queue q= (u); Call lteration O
while q is not empty) { bfs(1)
u= q.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
qd.append(v);

Queue g

Breadth-First Search

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) { _
Queue q= (u); Call lteration O
while q is not empty) { bfs(1)
u= q.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
qd.append(v);

02
Queue g

Breadth-First Search

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) { _
Queue q= (u); Call lteration 1
while q is not empty) { bfs(1)
u= q.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
qd.append(v);

02
Queue g

Breadth-First Search

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) { _
Queue q= (u); Call lteration 1
while q is not empty) { bfs(1)
u= q.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
qd.append(v);

Queue g

Breadth-First Search

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) { _
Queue q= (u); Call lteration 1
while q is not empty) { bfs(1)
u= q.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
qd.append(v);

Queue g

Breadth-First Search

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) { _
Queue q= (u); Call lteration 1
while q is not empty) { bfs(1)
u= q.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
qd.append(v);

27
Queue g

Breadth-First Search

/** Visit all nodes explorable from u. Pre: u is unvisited. . */
public static void bfs(int u) { _
Queue q= (u); Call lteration 2
while q is not empty) { bfs(1)
u= q.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
qd.append(v);

27
Queue g

Breadth-First Search

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) { _
Queue q= (u); Call lteration 2
while q is not empty) { bfs(1)
u= q.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
qd.append(v);

Queue g

Breadth-First Search

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) { _
Queue q= (u); Call lteration 2
while q is not empty) { bfs(1)
u= q.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
qd.append(v);

Queue g

Breadth-First Search

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) { _
Queue q= (u); Call lteration 2
while q is not empty) { bfs(1)
u= q.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u:
qd.append(v);

735
Queue g

Breadth-First Search

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) { .
Queue q= (u); Call lteration 2
while q is not empty) { bfs(1)
u= q.popFirst();
if (u has not been visited) {
visit u;
for each edge (u, v) leaving u.
qd.append(v);

Breadth first:

(1) Node u

(2) All nodes 1 edge from u

(3) All nodes 2 edges from
u

(4) All nodes 3 edges from

/735
Queue g

Some working code for DFS

« https://codeboard.io/projects/97448
« Sample graph constructed by the code:

* Suggested exercises: /r
— Run DFS by hand 0|

— Run BFS by hand g(\
— Code BFS
oy

Questions to Ponder

« BFS(root) on a tree corresponds to which
tree traversal?

« Write out the order nodes are visited in
this undirected graph, when calling:
— BFS(5)
— DFS(5)
— DFS(0)

(if there are ties, visit the lower # first)

