
Graph Traversals

CSCI 241 Spring 2020
Lecture 20

Announcements

• Quiz today – same as usual

• A4: Dijkstra’s Single Source Shortest Paths
–We’ll cover Dijkstra’s algorithm Wednesday
– Assignment released Wednesday
– Due a week later, Wednesday 6/3

Goals

• Understand and be able to implement
graph traversal/search algorithms:
– Depth-first search
– Breadth-first search

Look, a graph!

Look, a graph!

Look, a graph!

Look, a graph!

DAG

• A commonly-used flavor of graph:  
 Directed Acyclic Graph (DAG).

• Definition: A graph that is directed and
acyclic.

 1 2 3

1

2

3

Breaking DAG

3 2

3

1

2

3 1

0 1 1

0 0 0

0 1 0

Graph 1: Graph 2:

Which of the following two graphs are DAGs?
 Directed Acyclic
Graph

 1 2 3

1

2

3

Breaking DAG

3 2

3

1

2

3 1

0 1 1

0 0 0

0 1 0

1
3

2

1
3

2

Depth-First Search

•Given a graph and one of its nodes u
(say node 1 below)

1

0

2

5

3

4

6

Depth-First Search

•Given a graph and one of its nodes u
(say node 1 below)

•We want to “visit” each node reachable
from u

(nodes 1, 0, 2, 3, 5)

1

0

2

5

3

4

6

Depth-First Search

•Given a graph and one of its nodes u
(say node 1 below)

•We want to “visit” each node reachable
from u

(nodes 1, 0, 2, 3, 5)

1

0

2

5

3

4

6

There are many
paths to some
nodes.

How do we visit all
nodes efficiently,
without doing extra
work?

Depth-First Search

boolean[] visited;

1

0

2

5

3

4

6

Depth-First Search

boolean[] visited;
•Node u is visited means: visited[u] is true
•To visit u means to: set visited[u] to true

1

0

2

5

3

4

6

Depth-First Search

boolean[] visited;
•Node u is visited means: visited[u] is true
•To visit u means to: set visited[u] to true
•v is explorable from u if there is a path (u, …,
v)  
 in which all nodes of the path are unvisited.

1

0

2

5

3

4

6

Depth-First Search

boolean[] visited;
•Node u is visited means: visited[u] is true
•To visit u means to: set visited[u] to true
•v is explorable from u if there is a path (u, …,
v)  
 in which all nodes of the path are unvisited.

1

0

2

5

3

4

6

Suppose all nodes
are unvisited.

Depth-First Search

1

0

2

5

3

4

6

Suppose all nodes
are unvisited.

Nodes explorable
from node 1:  
{1, 0, 2, 3, 5}

boolean[] visited;

•Node u is visited means: visited[u] is true
•To visit u means to: set visited[u] to true
•v is explorable from u if there is a path (u, …,
v)  
 in which all nodes of the path are unvisited.

Depth-First Search

1

0

2

5

3

4

6

Suppose all nodes
are unvisited.

Nodes explorable
from node 1:  
{1, 0, 2, 3, 5}

Nodes explorable
from 4: {4, 5, 6}

boolean[] visited;

•Node u is visited means: visited[u] is true
•To visit u means to: set visited[u] to true
•v is explorable from u if there is a path (u, …,
v)  
 in which all nodes of the path are unvisited.

Depth-First Search

1

0

2

5

3

4

6

Green: visited
Blue: unvisited

boolean[] visited;

•Node u is visited means: visited[u] is true
•To visit u means to: set visited[u] to true
•v is explorable from u if there is a path (u, …,
v)  
 in which all nodes of the path are unvisited.

Depth-First Search

1

0

2

5

3

4

6

Green: visited
Blue: unvisited

Nodes explorable
from node 1:  
{1, 0, 5}

boolean[] visited;

•Node u is visited means: visited[u] is true
•To visit u means to: set visited[u] to true
•v is explorable from u if there is a path (u, …,
v)  
 in which all nodes of the path are unvisited.

Depth-First Search

1

0

2

5

3

4

6

Green: visited
Blue: unvisited

Nodes explorable
from node 1:  
{1, 0, 5}

Nodes explorable
from 4: none

boolean[] visited;

•Node u is visited means: visited[u] is true
•To visit u means to: set visited[u] to true
•v is explorable from u if there is a path (u, …,
v)  
 in which all nodes of the path are unvisited.

Depth-First Search

1

0

2

5

3

4

6

Green: visited
Blue: unvisited

Nodes explorable
from node 1:  
{1, 0, 5}

Nodes explorable
from 4: noneNot even 4 itself, because it’s already been

visited!

boolean[] visited;

•Node u is visited means: visited[u] is true
•To visit u means to: set visited[u] to true
•v is explorable from u if there is a path (u, …,
v)  
 in which all nodes of the path are unvisited.

Depth-First Search
/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */
public static void dfs(int u) {

}

Depth-First Search
/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */
public static void dfs(int u) {

}
1

0

2

5

3

4

6

Start

Depth-First Search
/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */
public static void dfs(int u) {

}
1

0

2

5

3

4

6

1

0

2

5

3

4

6

Start End

Let u be 1

The nodes
explorable from 1
are 1, 0, 2, 3, 5

Depth-First Search
/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */
public static void dfs(int u) {

}
1

0

2

5

3

4

6

Let u be 1

The nodes
explorable from 1
are 1, 0, 2, 3, 5

Depth-First Search
/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */
public static void dfs(int u) {
 visited[u] = true;

}
1

0

2

5

3

4

6

Let u be 1

The nodes
explorable from 1
are 1, 0, 2, 3, 5

Depth-First Search
/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */
public static void dfs(int u) {
 visited[u] = true;

}
1

0

2

5

3

4

6

Let u be 1
(visited)

The nodes to be
visited are 0, 2, 3,
5

Depth-First Search
/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */
public static void dfs(int u) {
 visited[u] = true;

Let u be 1
(visited)

The nodes to be
visited are 0, 2, 3,
5

Have to do DFS on
all unvisited
neighbors of u!1

0

2

5

3

4

6

Depth-First Search
/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */
public static void dfs(int u) {
 visited[u] = true;
 for all edges (u, v) leaving u:
 if v is unvisited then dfs(v);

Let u be 1
(visited)

The nodes to be
visited are 0, 2, 3,
5

Have to do DFS on
all unvisited
neighbors of u!1

0

2

5

3

4

6

Depth-First Search
/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */
public static void dfs(int u) {
 visited[u] = true;
 for all edges (u, v) leaving u:
 if v is unvisited then dfs(v);
}

Let u be 1
(visited)

The nodes to be
visited are 0, 2, 3,
5

Have to do DFS on
all unvisited
neighbors of u!1

0

2

5

3

4

6

Depth-First Search
/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */
public static void dfs(int u) {
 visited[u] = true;
 for all edges (u, v) leaving u:
 if v is unvisited then dfs(v);
}

Suppose the for
loop visits
neighbors in
numerical order.
Then dfs(1) visits
the nodes in this
order: 1 …

1

0

2

5

3

4

6

Depth-First Search
/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */
public static void dfs(int u) {
 visited[u] = true;
 for all edges (u, v) leaving u:
 if v is unvisited then dfs(v);
}

Suppose the for
loop visits
neighbors in
numerical order.
Then dfs(1) visits
the nodes in this
order: 1, 0 …

1

0

2

5

3

4

6

Depth-First Search
/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */
public static void dfs(int u) {
 visited[u] = true;
 for all edges (u, v) leaving u:
 if v is unvisited then dfs(v);
}

Suppose the for
loop visits
neighbors in
numerical order.
Then dfs(1) visits
the nodes in this
order: 1, 0, 2 …

1

0

2

5

3

4

6

Depth-First Search
/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */
public static void dfs(int u) {
 visited[u] = true;
 for all edges (u, v) leaving u:
 if v is unvisited then dfs(v);
}

Suppose the for
loop visits
neighbors in
numerical order.
Then dfs(1) visits
the nodes in this
order: 1, 0, 2, 3 …

1

0

2

5

3

4

6

Depth-First Search
/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */
public static void dfs(int u) {
 visited[u] = true;
 for all edges (u, v) leaving u:
 if v is unvisited then dfs(v);
}

Suppose the for
loop visits
neighbors in
numerical order.
Then dfs(1) visits
the nodes in this
order: 1, 0, 2, 3, 5

1

0

2

5

3

4

6

Depth-First Search
/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */
public static void dfs(int u) {
 visited[u] = true;
 for all edges (u, v) leaving u:
 if v is unvisited then dfs(v);
}

Suppose n nodes are explorable along e
edges (in total). What is
• Worst-case runtime?
• Worst-case space?

Depth-First Search
/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */
public static void dfs(int u) {
 visited[u] = true;
 for all edges (u, v) leaving u:
 if v is unvisited then dfs(v);
}

Suppose n nodes are explorable along e
edges (in total). What is
• Worst-case runtime? O(n+e)
• Worst-case space? O(n)

Depth-First Search
/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */
public static void dfs(int u) {
 visited[u] = true;
 for all edges (u, v) leaving u:
 if v is unvisited then dfs(v);
}

That’s all there is
to basic DFS. You
may have to
change it to fit a
particular
situation.

Depth-First Search
/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */
public static void dfs(int u) {
 visited[u] = true;
 for all edges (u, v) leaving u:
 if v is unvisited then dfs(v);
}

Example: Use different way (other than array
visited) to know whether a node has been
visited

That’s all there is
to basic DFS. You
may have to
change it to fit a
particular
situation.

Depth-First Search
/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */
public static void dfs(int u) {
 visited[u] = true;
 for all edges (u, v) leaving u:
 if v is unvisited then dfs(v);
}

Example: Use different way (other than array
visited) to know whether a node has been
visited
Example: We really haven’t said what data
structures are used to implement the graph

That’s all there is
to basic DFS. You
may have to
change it to fit a
particular
situation.

Depth-First Search
/** Visit all nodes that are
explorable from u. Precondition: u is
unvisited. */
public static void dfs(int u) {
 visited[u] = true;
 for all edges (u, v) leaving u:
 if v is unvisited then dfs(v);
}

Example: Use different way (other than array
visited) to know whether a node has been
visited
Example: We really haven’t said what data
structures are used to implement the graph

That’s all there is
to basic DFS. You
may have to
change it to fit a
particular
situation.

If you don’t have
this spec and you
do something
different, it’s
probably wrong.

Depth-First Search in OO fashion
public class Node {
 boolean visited;
 List<Node> neighbors;

Each node of the
graph is an object
of type Node

Depth-First Search in OO fashion
public class Node {
 boolean visited;
 List<Node> neighbors;

 /** Visit all nodes that are explorable  
 * from u. Precondition: u is unvisited */
 public void dfs() {
 visited= true;

Each node of the
graph is an object
of type Node

Depth-First Search in OO fashion
public class Node {
 boolean visited;
 List<Node> neighbors;

 /** Visit all nodes that are explorable  
 * from u. Precondition: u is unvisited */
 public void dfs() {
 visited= true;

Each node of the
graph is an object
of type Node

No need for a
parameter. The
object is the
node.

Depth-First Search in OO fashion
public class Node {
 boolean visited;
 List<Node> neighbors;

 /** Visit all nodes that are explorable  
 * from u. Precondition: u is unvisited */
 public void dfs() {
 visited= true;
 for (Node n: neighbors) {
 if (!n.visited) n.dfs();
 }
 }

Each node of the
graph is an object
of type Node

No need for a
parameter. The
object is the
node.

Depth-First Search in OO fashion
public class Node {
 boolean visited;
 List<Node> neighbors;

 /** Visit all nodes that are explorable  
 * from u. Precondition: u is unvisited */
 public void dfs() {
 visited= true;
 for (Node n: neighbors) {
 if (!n.visited) n.dfs();
 }
 }
}

Each node of the
graph is an object
of type Node

No need for a
parameter. The
object is the
node.

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes that have to be visited are
 // explorable from some node in s
 while () {

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes that have to be visited are
 // explorable from some node in s
 while () {s is not empty

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes that have to be visited are
 // explorable from some node in s
 while () {
 u = s.pop(); // Remove top stack node, put in u
 if (u has not been visited) {

s is not empty

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes that have to be visited are
 // explorable from some node in s
 while () {
 u = s.pop(); // Remove top stack node, put in u
 if (u has not been visited) {
 visit u;

s is not empty

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes that have to be visited are
 // explorable from some node in s
 while () {
 u = s.pop(); // Remove top stack node, put in u
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);

s is not empty

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes that have to be visited are
 // explorable from some node in s
 while () {
 u = s.pop(); // Remove top stack node, put in u
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }

s is not empty

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes that have to be visited are
 // explorable from some node in s
 while () {
 u = s.pop(); // Remove top stack node, put in u
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }

s is not empty

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int nodeID) {
 Stack s = (nodeID); // Not Java!
 // inv: all nodes that have to be visited are
 // explorable from some node in s
 while () {
 u = s.pop(); // Remove top stack node, put in u
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
}

s is not empty

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Stack s

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Stack s

1

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Iteration 0

Stack s

1

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Iteration 0

Stack s

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Iteration 0

Stack s

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Iteration 0

Stack s

0
2
5

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Iteration 1

Stack s

0
2
5

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Iteration 1

Stack s

2
5

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Iteration 1

Stack s

2
5

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Iteration 2

Stack s

2
5

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Iteration 2

Stack s

5

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Iteration 2

Stack s

5

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Iteration 2

Stack s

3
5
5

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Iteration 2

Stack s

3
5
5

Yes, 5 is put on the
stack twice, once for
each edge to it. It
will be visited only
once.

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Iteration 3

Stack s

3
5
5

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Iteration 3

Stack s

5
5

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Iteration 3

Stack s

5
5

3

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Iteration 3

Stack s

5
5
5

3

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Iteration 4

Stack s

5
5

3

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Iteration 4

Stack s

5
5

3

5

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Iteration 4

Stack s

5
5

3

5

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Iteration 5

Stack s

5

3

5

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
} 1

0

2

5

3

4

6

Call
dfs(1)

Iteration 6

Stack s

 3

5

Depth-First Search written iteratively
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u);
 while (s is not empty) {
 u= s.pop();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
}

That’s DFS!
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u); // Not Java!
 // inv: all nodes that have to be visited are
 // explorable from some node in s
 while () {
 u= s.pop(); // Remove top stack node, put in u
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
}

s is not empty

That’s DFS!
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u); // Not Java!
 // inv: all nodes that have to be visited are
 // explorable from some node in s
 while () {
 u= s.pop(); // Remove top stack node, put in u
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
}

s is not empty

Want to see a magic trick?

Depth-First Search
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u); // Not Java!
 // inv: all nodes that have to be visited are
 // explorable from some node in s
 while () {
 u= s.pop(); // Remove top stack node, put in u
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
}

s is not empty

Depth-First Search
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void dfs(int u) {
 Stack s= (u); // Not Java!
 // inv: all nodes that have to be visited are
 // explorable from some node in s
 while () {
 u= s.pop(); // Remove top stack node, put in u
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 s.push(v);
 }
 }
}

s is not empty

Breadth-First Search
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) {
 Queue q= (u); // Not Java!
 // inv: all nodes that have to be visited are
 // explorable from some node in s
 while () {
 u= q.popFirst(); // Remove first node in queue, put
in u
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 q.append(v); // Add to end of queue
 }
 }
}

q is not empty

/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) {
 Queue q= (u); // Not Java!
 // inv: all nodes that have to be visited are
 // explorable from some node in s
 while () {
 u= q.popFirst(); // Remove first node in queue, put
in u
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 q.append(v); // Add to end of queue
 }
 }
}

Breadth-First Search

q is not empty

Breadth-First Search
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) {
 Queue q= (u);
 while q is not empty) {
 u= q.popFirst();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 q.append(v);
 }
 }
} 1

0

2

5

3

4

6

Call
bfs(1)

Queue q7

Breadth-First Search
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) {
 Queue q= (u);
 while q is not empty) {
 u= q.popFirst();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 q.append(v);
 }
 }
} 1

0

2

5

3

4

6

Call
bfs(1)

Queue q
1

7

Breadth-First Search
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) {
 Queue q= (u);
 while q is not empty) {
 u= q.popFirst();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 q.append(v);
 }
 }
} 1

0

2

5

3

4

6

Call
bfs(1)

Queue q
1

Iteration 0

7

Breadth-First Search
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) {
 Queue q= (u);
 while q is not empty) {
 u= q.popFirst();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 q.append(v);
 }
 }
} 1

0

2

5

3

4

6

Call
bfs(1)

Queue q

Iteration 0

7

Breadth-First Search
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) {
 Queue q= (u);
 while q is not empty) {
 u= q.popFirst();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 q.append(v);
 }
 }
} 1

0

2

5

3

4

6

Call
bfs(1)

Queue q

Iteration 0

7

Breadth-First Search
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) {
 Queue q= (u);
 while q is not empty) {
 u= q.popFirst();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 q.append(v);
 }
 }
} 1

0

2

5

3

4

6

Call
bfs(1)

Queue q
0 2

Iteration 0

7

Breadth-First Search
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) {
 Queue q= (u);
 while q is not empty) {
 u= q.popFirst();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 q.append(v);
 }
 }
} 1

0

2

5

3

4

6

Call
bfs(1)

Queue q
0 2

Iteration 1

7

Breadth-First Search
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) {
 Queue q= (u);
 while q is not empty) {
 u= q.popFirst();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 q.append(v);
 }
 }
} 1

0

2

5

3

4

6

Call
bfs(1)

Queue q
2

Iteration 1

7

Breadth-First Search
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) {
 Queue q= (u);
 while q is not empty) {
 u= q.popFirst();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 q.append(v);
 }
 }
} 1

0

2

5

3

4

6

Call
bfs(1)

Queue q
2

Iteration 1

7

Breadth-First Search
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) {
 Queue q= (u);
 while q is not empty) {
 u= q.popFirst();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 q.append(v);
 }
 }
} 1

0

2

5

3

4

6

Call
bfs(1)

Queue q
2 7

Iteration 1

7

Breadth-First Search
/** Visit all nodes explorable from u. Pre: u is unvisited. . */
public static void bfs(int u) {
 Queue q= (u);
 while q is not empty) {
 u= q.popFirst();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 q.append(v);
 }
 }
} 1

0

2

5

3

4

6

Call
bfs(1)

Queue q
2 7

Iteration 2

7

Breadth-First Search
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) {
 Queue q= (u);
 while q is not empty) {
 u= q.popFirst();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 q.append(v);
 }
 }
} 1

0

2

5

3

4

6

Call
bfs(1)

Queue q
7

Iteration 2

7

Breadth-First Search
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) {
 Queue q= (u);
 while q is not empty) {
 u= q.popFirst();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 q.append(v);
 }
 }
} 1

0

2

5

3

4

6

Call
bfs(1)

Queue q
7

Iteration 2

7

Breadth-First Search
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) {
 Queue q= (u);
 while q is not empty) {
 u= q.popFirst();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 q.append(v);
 }
 }
} 1

0

2

5

3

4

6

Call
bfs(1)

Queue q
7 3 5

Iteration 2

7

Breadth-First Search
/** Visit all nodes explorable from u. Pre: u is unvisited. */
public static void bfs(int u) {
 Queue q= (u);
 while q is not empty) {
 u= q.popFirst();
 if (u has not been visited) {
 visit u;
 for each edge (u, v) leaving u:
 q.append(v);
 }
 }
} 1

0

2

5

3

4

6

Call
bfs(1)

Queue q
7 3 5

Iteration 2

Breadth first:
(1) Node u
(2) All nodes 1 edge from u
(3) All nodes 2 edges from

u
(4) All nodes 3 edges from

u
…

7

Some working code for DFS

• https://codeboard.io/projects/97448
• Sample graph constructed by the code:

• Suggested exercises:
– Run DFS by hand
– Run BFS by hand
– Code BFS

1

0
2

3
4

Questions to Ponder

• BFS(root) on a tree corresponds to which
tree traversal?

• Write out the order nodes are visited in
this undirected graph, when calling:
– BFS(5)
– DFS(5)
– DFS(0) 1

0

2

5

3

4

6

(if there are ties, visit the lower # first)

