CSCI 241
Lecture 18
HashMap, Rehashing, Hash Functions, Open Addressing
Announcements

• Midterm grading is underway

• Lab 7 is forthcoming (out today or tomorrow)
Goals

• Know how to implement Set and Map using hash tables.

• Know how to respond to large hash table load factors by resizing the array and rehashing.

• Know how to avoid linked list buckets using open addressing with linear or quadratic probing.

• Know how to use the hashCode method of java objects.
Origins of the term “hash”

History [edit]

The term "hash" offers a natural analogy with its non-technical meaning (to "chop" or "make a mess" out of something), given how hash functions scramble their input data to derive their output.[19] In his research for the precise origin of the term, Donald Knuth notes that, while Hans Peter Luhn of IBM appears to have been the first to use the concept of a hash function in a memo dated January 1953, the term itself would only appear in published literature in the late 1960s, on Herbert Hellerman's *Digital Computer System Principles*, even though it was already widespread jargon by then.[20]

https://en.wikipedia.org/wiki/Hash_function#History
Implementing Set<V>

- Use a HashTable! \[h(k) = k \mod A.\text{length} \]
- Hash the key to determine array index
- Store values in array
 - add(14): \((14 \mod 10) \Rightarrow 4 \)
 - add(10): \((10 \mod 10) \Rightarrow 0 \)
 - add(1): \((1 \mod 10) \Rightarrow 1 \)
 - add(11): \((11 \mod 10) \Rightarrow 1 \)
Implementing Set\(<V>\>

- Use a HashTable!
- Hash the key to determine array index
- Store values in array
 - \(\text{add}(14): (14 \ % \ 10) \Rightarrow 4\)
 - \(\text{add}(10): (10 \ % \ 10) \Rightarrow 0\)
 - \(\text{add}(1): (1 \ % \ 10) \Rightarrow 1\) (collision)
 - \(\text{add}(11): (11 \ % \ 10) \Rightarrow 1\)
public interface Map<K, V> {

 /** Returns the value to which the specified key
 * is mapped, or null if this map contains no
 * mapping for the key. */
 V get(Object key);

 /** Associates the specified value with the
 * specified key in this map */
 V put(K key, V value);

 /** Removes the mapping for a key from this map
 * if it is present */
 V remove(Object key);

 // more methods
}
Map<Integer, String>

- Use a HashTable!
- Hash the key to determine array index
- Store values in array

\[h(k) = k \mod A.length \]

```
put(1, "dog");
put(11, "auk");
put(10, "bear");
put(14, "cat");
put(24, "ape");
```
Map<Integer, String>

- Use a HashTable!
- Hash the key to determine array index
- Store values in array

\[h(k) = k \% A.\text{length} \]

```
put(1, "dog");
put(11, "auk");
put(10, "bear");
put(14, "cat");
put(24, "ape");
```
Map<
Integer,String>

- Use a HashTable (or a HashSet of Key-Value pairs)
- Hash the key to determine array index
- Store values in array
- Store (K,V) pairs in the array.

put(1, “dog”);
put(11, “auk”);
put(10, “bear”);
put(14, “cat”);
put(24, “ape”);

get(14)
Hash Tables: Load Factor

\[
\text{Load Factor} = \frac{\# \text{ entries in table}}{\text{size of the array}}
\]
Hash Tables: Load Factor

How full is your hash table?

Load factor $\lambda = \frac{\text{# entries in table}}{\text{size of the array}}$

The average bucket size is λ.

Average-case runtime is $O(\lambda)$.

[50x380]Hash Tables: Load Factor

[46x201]Load factor λ

[46x36]Average-case runtime is $O(\lambda)$.
Hash Tables: Load Factor

\[\frac{\text{# entries in table}}{\text{size of the array}} \]
Hash Tables: Load Factor

Load factor $\lambda = \frac{\text{# entries in table}}{\text{size of the array}}$

Average-case runtime is $O(\lambda)$.

- If λ is large, runtime is slow.
- If λ is small, memory is wasted.

Strategy: grow or shrink array when λ gets too large or small.
Shrinking the array

Requires **rehashing**: put each element where it belongs in the new array.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>“bear”</td>
<td>1</td>
<td>“dog”</td>
<td>11</td>
<td>“auk”</td>
<td>14</td>
<td>“cat”</td>
<td>24</td>
<td>“ape”</td>
</tr>
</tbody>
</table>

```plaintext
[0
  1
  2]
```
Shrinking the array

Requires **rehashing**: put each element where it belongs in the new array.

\[h(x) = x \mod 3 \]

\[(10 \mod 3) \rightarrow 1\]

<table>
<thead>
<tr>
<th>0</th>
<th>10 “bear”</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 “dog”</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14 “cat”</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

\[\begin{array}{c|c}
 0 & 10 “bear” \\
 1 & 1 “dog” \\
 2 & \\
 3 & \\
 4 & 14 “cat” \\
 5 & \\
 6 & \\
 7 & \\
 8 & \\
 9 & \\
\end{array} \]
Shrinking the array

Requires **rehashing**: put each element where it belongs in the new array.

![Diagram of array shrinking with rehashing](image-url)
Shrinking the array

Requires **rehashing**: put each element where it belongs in the new array.

<table>
<thead>
<tr>
<th>0</th>
<th>10 “bear”</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 “dog”</td>
</tr>
<tr>
<td></td>
<td>11 “auk”</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14 “cat”</td>
</tr>
<tr>
<td></td>
<td>24 “ape”</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

(10 % 3) -> 1
(1 % 3) -> 1
(11 % 3) -> 2
Shrinking the array

Requires **rehashing**: put each element where in belongs in the new array.

<table>
<thead>
<tr>
<th>0</th>
<th>10 “bear”</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 “dog”</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14 “cat”</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

(10 % 3) -> 1
(1 % 3) -> 1
(11 % 3) -> 2
(14 % 3) -> 2
Shrinking the array

Requires **rehashing**: put each element where it belongs in the new array.

\[(10 \mod 3) \rightarrow 1\]
\[(1 \mod 3) \rightarrow 1\]
\[(11 \mod 3) \rightarrow 2\]
\[(14 \mod 3) \rightarrow 2\]
\[(24 \mod 3) \rightarrow 0\]
Growing the array

Also requires rehashing: put each element where it belongs in the new array.

Exercise: Grow the array to size 6 and rehash:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24 “ape”</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10 “bear”</td>
<td>1 “dog”</td>
</tr>
<tr>
<td>2</td>
<td>11 “auk”</td>
<td>14 “cat”</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How many elements are in the most full bucket?

A. 1
B. 2
C. 3
D. 4
Rehashing: Runtime

Let $N = \text{array size}$

Let $n = \text{number of entries}$

Rehashing algorithm:

- for each bucket b:
 - for each element e in b:
 - put e into the new array

Revisits N buckets

Revisits n entries (total)

Could be $O(n)$

$$N + n\left(\text{runtime of put}\right)$$
Rehashing: Runtime, take 1

Let C = array size
Let n = number of entries

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array
Rehashing: Runtime, take 1

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

Let $C = \text{array size}$
Let $n = \text{number of entries}$

visits C buckets
Rehashing: Runtime, take 1

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

Let C = array size
Let n = number of entries

visits C buckets
visits n entries (total)
Rehashing: Runtime, take 1

Rehashing algorithm:
for each bucket b:
 for each element e in b:
 put e into the new array

Let $C = \text{array size}$
Let $n = \text{number of entries}$

visits C buckets
visits n entries (total)

could be $O(n) =$

<table>
<thead>
<tr>
<th>0</th>
<th>10 “bear”</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 “dog”</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14 “cat”</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
Rehashing: Runtime, take 1

Rehashing algorithm:

for each bucket \(b \):
 for each element \(e \) in \(b \):
 put \(e \) into the new array

Let \(C = \) array size
Let \(n = \) number of entries

Overall runtime is:

- worst-case \(O(C + n^2) \)
- average-case \(O(C + n) \)

visits \(C \) buckets
visits \(n \) entries (total)
could be \(O(n) = (\)

for each bucket \(b \):
 for each element \(e \) in \(b \):
 put \(e \) into the new array
Rehashing: Runtime, take 2

Let C = array size (capacity)
Let n = number of entries

Rehashing algorithm:
for each bucket b:
 for each element e in b:
 put e into the new array

visits C buckets
visits n entries (total)
Rehashing: Runtime, take 2

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

Let $C =$ array size (capacity)
Let $n =$ number of entries

visits C buckets
visits n entries (total)

could it be $O(n)$?
Rehashing: Runtime, take 2

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

Let $C = \text{array size (capacity)}$
Let $n = \text{number of entries}$

visits C buckets
visits n entries (total)

could it be $O(n)$?

We can’t have duplicate keys: all (k,v) pairs were already in the map!

Consequence: we don’t need to search the bucket when rehashing
Rehashing: Runtime, take 2

Let $C = \text{array size (capacity)}$
Let $n = \text{number of entries}$

Overall runtime is:
- worst-case $O(C + n)$

visits C buckets
visits n entries (total)

Could it be $O(n)$?

Rehashing algorithm:
for each bucket b:
 for each element e in b:
 put e into the new array

We can’t have duplicate keys: all (k,v) pairs were already in the map!
Consequence: we don’t need to search the bucket when rehashing
How do we hash things that aren't integers?
Hashing Multiple Integers

- Various heuristic methods:
 - \((a + b + c + d) \mod N\)
 - \((a k^1 + b k^2 + c k^3 + d k^4) \mod N\)

Hashing Strings

- Interpret ASCII (or unicode) representation as an integer.
- Java String uses:
 \(s[0] \times 31^{(n-1)} + s[1] \times 31^{(n-2)} + \ldots + s[n-1]\)
Hashing in Java

- Object has a `hashCode` method. By default, this returns the object’s address in memory.

- Scenario 1: You are using a class that someone else wrote.
 - All Java objects (i.e., non-primitive types) inherit from Object.
 - If you want to put an instance of the class in a hash table, you don’t need to know how to hash it!
 - Just call its `hashCode` method.
Collision Resolution

- **Chaining** - use a LinkedList to store multiple elements per bucket.

- **Open Addressing** - use empty buckets to store things that belong in other buckets.
 - Need some scheme for deciding which buckets to look in.
Open Addressing with Linear Probing

- **Open Addressing** - use empty buckets to store things that belong in other buckets.

- Which empty bucket? Using the next empty one is called **Linear Probing**

```plaintext
put(1, "dog");
put(11, "auk");
put(10, "bear");
put(14, "cat");
put(24, "ape");
```

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
</table>

**put(key):**

```plaintext
h = hash(key);

while A[h] is full:
 h = (h+1) % N
A[h] = value
```
Open Addressing with Linear Probing

- **Open Addressing** - use empty buckets to store things that belong in other buckets.

- Which empty bucket? Using the next empty one is called **Linear Probing**

<table>
<thead>
<tr>
<th>put(key)</th>
<th>A[h]</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(1, dog)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **put**
  - `put(1, “dog”);`
  - `put(11, “auk”);`
  - `put(10, “bear”);`
  - `put(14, “cat”);`
  - `put(24, “ape”);`

- `h = hash(key);`
- `while A[h] is full:`
- `h = (h+1) % N`
- `A[h] = value`
Open Addressing with Linear Probing

- **Open Addressing** - use empty buckets to store things that belong in other buckets.

- Which empty bucket? Using the next empty one is called **Linear Probing**

```plaintext
put(1, "dog");
put(11, "auk");
put(10, "bear");
put(14, "cat");
put(24, "ape");
```

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1, dog)</td>
<td>(11, auk)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**put(key):**

```plaintext
h = hash(key);
while A[h] is full:
 h = (h+1) % N
A[h] = value
```
Open Addressing with Linear Probing

- **Open Addressing** - use empty buckets to store things that belong in other buckets.

- Which empty bucket? Using the next empty one is called **Linear Probing**

```
put(1, "dog");
put(11, "auk");
put(10, "bear");
put(14, "cat");
put(24, "ape");
```
Open Addressing with Linear Probing

- **Open Addressing** - use empty buckets to store things that belong in other buckets.

- Which empty bucket? Using the next empty one is called **Linear Probing**

<table>
<thead>
<tr>
<th>Index</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(10, bear)</td>
</tr>
<tr>
<td>1</td>
<td>(1, dog)</td>
</tr>
<tr>
<td>2</td>
<td>(11, auk)</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(14, cat)</td>
</tr>
</tbody>
</table>

```javascript
put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value
```
Open Addressing with Linear Probing

- **Open Addressing** - use empty buckets to store things that belong in other buckets.

- Which empty bucket? Using the next empty one is called **Linear Probing**

```java
put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value
```
Open Addressing with Linear Probing

• Problem with linear probing:
  • Hashing clustered values (e.g., 1, 1, 3, 2, 3, 4, 6, 4, 5) will result in a lot of searching.

```
put(1, "dog");
put(11, "auk");
put(10, "bear");
put(14, "cat");
put(24, "ape");
```

<table>
<thead>
<tr>
<th>A[h]</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(10, bear)</td>
</tr>
<tr>
<td>1</td>
<td>(1, dog)</td>
</tr>
<tr>
<td>2</td>
<td>(11, auk)</td>
</tr>
<tr>
<td>3</td>
<td>(24, ape)</td>
</tr>
<tr>
<td>4</td>
<td>(14, cat)</td>
</tr>
</tbody>
</table>

```
put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value
```
Open Addressing with Quadratic Probing

- **Quadratic Probing**: Jump further ahead to avoid clustering of full buckets.

  Linear probing looks at $H, H+1, H+2, H+3, H+4, \ldots$

  Quadratic probing looks at $H, H+1, H+4, H+9, H+16, \ldots$

  \[
  \downarrow \downarrow \downarrow \downarrow \downarrow
  \]

  \[
  \uparrow \uparrow \uparrow \uparrow \uparrow
  \]

  \textbf{put}(key):
  
  \[
  H = \text{hash}(key);
  \]
  \[
  i = 0;
  \]
  \[
  \textbf{while} \ A[h] \ \textbf{is full}:
  \]
  
  \[
  h = (H + i^2) \mod N
  \]
  \[
  i++;
  \]
  \[
  A[h] = \text{value}
  \]

| put(1, “dog”); |
| put(11, “auk”); |
| put(10, “bear”); |
| put(14, “cat”); |
| put(24, “ape”); |

<table>
<thead>
<tr>
<th>0</th>
<th>(10, bear)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, dog)</td>
</tr>
<tr>
<td>2</td>
<td>(11, auk)</td>
</tr>
<tr>
<td>3</td>
<td>(24, ape)</td>
</tr>
<tr>
<td>4</td>
<td>(14, cat)</td>
</tr>
</tbody>
</table>
Open Addressing with Quadratic Probing

- **Quadratic Probing:** Jump further ahead to avoid clustering of full buckets.

Linear probing looks at H, H+1, H+2, H+3, H+4, ...

Quadratic probing looks at H, H+1, H+4, H+9, H+16, ...

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(10, bear)</td>
</tr>
<tr>
<td>1</td>
<td>(1, dog)</td>
</tr>
<tr>
<td>2</td>
<td>(11, auk)</td>
</tr>
<tr>
<td>3</td>
<td>(24, ape)</td>
</tr>
<tr>
<td>4</td>
<td>(14, cat)</td>
</tr>
</tbody>
</table>

```python
put(key):
 H = hash(key);
 i = 0;
 while A[h] is full:
 h = (H + i^2) % N
 i++;
 A[h] = value
```
Open Addressing with Quadratic Probing

- **Quadratic Probing:** Jump further ahead to avoid clustering of full buckets.

**Exercise:** Which buckets are full after the following insertions into an array size of 10 using quadratic probing?

```plaintext
put(0, “ape”);
put(1, “dog”);
put(20, “elf”);
put(21, “auk”);
put(40, “bear”);
put(41, “cat”);
put(60, “elk”);
put(61, “imp”);
```

**Put Function:**

```
put(key):
 H = hash(key);
 i = 0;
 while A[h] is full:
 h = (H + i^2) % N
 i++;
 A[h] = value
```
Open Addressing with Quadratic Probing

- **Quadratic Probing**: Jump further ahead to avoid clustering of full buckets.

**Exercise**: Which buckets are full after the following insertions into an array size of 10 using quadratic probing?

```
put(0, “ape”); 0
put(1, “dog”); 1
put(20, “elf”); 0, 1, 4
put(21, “auk”); 1, 2
put(40, “bear”); 0, 1, 4, 9
put(41, “cat”); 1, 2, 5
put(60, “elk”); 0, 1, 4, 9, 6
put(61, “imp”); 1, 2, 5, 10, 7
```

```
put(key):
 H = hash(key);
i = 0;
while A[h] is full:
 h = (H + i^2) % N
 i++;
A[h] = value
```
Open Addressing: Runtime

- May be faster, but may not be. Depends on keys.

- There’s no free lunch: worst-case is always $O(n)$.

- In practice, average-case is $O(1)$ if you make good design decisions and insertions are not done by an adversary.
Further Reading

• CLRS 11.5: Perfect Hashing
  
  • You can guarantee $O(1)$ lookups and insertions if the set of keys is fixed

• C++ implementations from Google:
  
  • `sparse_hash_map` - optimized for memory overhead
  
  • `dense_hash_map` - optimized for speed
Map and HashMap

• Map is an ADT

• HashMap is an implementation of a Map using a Hash Table.

• TreeMap is a thing too - some of you already wrote one!
  
  • AVL tree: store a key and a value in each node; BST property applies to keys only
  
  • Example: TreeMap<String, Integer> maps words to the number of times they have been seen
TreeMap vs HashMap

• Runtime of put, get, and remove:
  • TreeMap has $O(\log n)$ worst and expected
  • HashMap has $O(1)$ expected, $O(n)$ worst; better in practice

• Other considerations:
  • TreeMap enable sorted traversal of keys
  • HashMaps are space-inefficient if load factor is small