
CSCI 241
Lecture 18

HashMap, Rehashing, Hash Functions, Open Addressing

Announcements
• Midterm grading is underway

• Lab 7 is forthcoming (out today or
tomorrow)

Goals
• Know how to implement Set and Map using hash

tables.

• Know how to respond to large hash table load
factors by resizing the array and rehashing.

• Know how to avoid linked list buckets using open
addressing with linear or quadratic probing.

• Know how to use the hashCode method of java
objects.

Origins of the term “hash”

https://en.wikipedia.org/wiki/Hash_function#History

Implementing Set<V>
• Use a HashTable!

• Hash the key to determine array index

• Store values in array

h(k) = k % A.length

0

11
2
3
4
5
6
7
8
9

10
1

14

• add(14): (14 % 10) => 4

• add(10): (10 % 10) => 0

• add(1): (1 % 10) => 1

• add(11): (11 % 10) => 1

Implementing Set<V>
• Use a HashTable!

• Hash the key to determine array index

• Store values in array

h(k) = k % A.length

0

11
2
3
4
5
6
7
8
9

10
1

14

• add(14): (14 % 10) => 4

• add(10): (10 % 10) => 0

• add(1): (1 % 10) => 1

• add(11): (11 % 10) => 1

11

(collision)

The Map Interface
public interface Map<K,V> {
 /** Returns the value to which the specified key
 * is mapped, or null if this map contains no
 * mapping for the key. */
 V get(Object key);

 /** Associates the specified value with the
 * specified key in this map */
 V put(K key, V value);

 /** Removes the mapping for a key from this map
 * if it is present */
 V remove(Object key);

 // more methods
}

Map<Integer,String>
• Use a HashTable!

• Hash the key to determine array index

• Store values in array 0

11
2
3
4
5
6
7
8
9

“bear”

“cat”

“auk”

h(k) = k % A.length
put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

“dog”

“ape”

Map<Integer,String>
• Use a HashTable!

• Hash the key to determine array index

• Store values in array 0

11
2
3
4
5
6
7
8
9

“bear”

“cat”

“auk”

h(k) = k % A.length
put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

“dog”

“ape”

• Use a HashTable (or a HashSet of Key-Value pairs)

• Hash the key to determine array index

• Store values in array

• Store (K,V) pairs in  
the array.

Map<Integer,String>

0

11
2
3
4
5
6
7
8
9

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”
put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

Hash Tables: Load Factor

entries in table

size of the array

Hash Tables: Load Factor

How full is your hash table?

 
Load factor λ =

The average bucket size is λ.

Average-case runtime is O(λ).

entries in table

size of the array

Hash Tables: Load Factor
entries in table

size of the array

Hash Tables: Load Factor
 
Load factor λ =

 
Average-case runtime is O(λ).

• If λ is large, runtime is slow.

• If λ is small, memory is wasted.

Strategy: grow or shrink array when λ gets too
large or small.

entries in table

size of the array

Shrinking the array

0

11
2
3
4
5
6
7
8
9

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

0
1
2

Requires rehashing: put each element where in belongs in the
new array.

Shrinking the array

0

11
2
3
4
5
6
7
8
9

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

0
1
2

10 “bear”

(10 % 3) -> 1

Requires rehashing: put each element where in belongs in the
new array.

Shrinking the array

0

11
2
3
4
5
6
7
8
9

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

0
1
2

10 “bear”

(10 % 3) -> 1
(1 % 3) -> 1

1 “dog”

Requires rehashing: put each element where in belongs in the
new array.

Shrinking the array

0

11
2
3
4
5
6
7
8
9

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

0
1
2

10 “bear”

(10 % 3) -> 1
(1 % 3) -> 1

1 “dog”

(11 % 3) -> 2

11 “auk”

Requires rehashing: put each element where in belongs in the
new array.

Shrinking the array

0

11
2
3
4
5
6
7
8
9

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

0
1
2

10 “bear”

(10 % 3) -> 1
(1 % 3) -> 1

1 “dog”

(11 % 3) -> 2

11 “auk”

Requires rehashing: put each element where in belongs in the
new array.

(14 % 3) -> 2

14 “cat”

Shrinking the array

0

11
2
3
4
5
6
7
8
9

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

0
1
2

10 “bear”

(10 % 3) -> 1
(1 % 3) -> 1

1 “dog”

(11 % 3) -> 2

11 “auk”

Requires rehashing: put each element where in belongs in the
new array.

(14 % 3) -> 2

14 “cat”

(24 % 3) -> 0

24 “ape”

Growing the array
Also requires rehashing: put each element where in belongs in
the new array.

0
1
2
3
4
5

0
1
2
3

10 “bear” 1 “dog”
11 “auk” 14 “cat”

24 “ape”

Exercise: Grow the array to size 6 and rehash:

ABCD:

How many elements are in the most full bucket?

A. 1

B. 2

C. 3

D. 4

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

visits N buckets
visits n entries (total)

could be O(n) =(

Let N = array size
Let n = number of entries

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime, take 1

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

Let C = array size
Let n = number of entries

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime, take 1

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

visits C buckets

Let C = array size
Let n = number of entries

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime, take 1

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

visits n entries (total)
visits C buckets

Let C = array size
Let n = number of entries

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime, take 1

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

visits n entries (total)
could be O(n) =(

visits C buckets

Let C = array size
Let n = number of entries

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime, take 1

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

visits n entries (total)
could be O(n) =(

visits C buckets

Let C = array size
Let n = number of entries

Overall runtime is:
• worst-case O(C + n2)

• average-case O(C + n)

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime, take 2

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

visits n entries (total)
visits C buckets

Let C = array size (capacity)
Let n = number of entries

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime, take 2

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

visits n entries (total)
could it be O(n)?

visits C buckets

Let C = array size (capacity)
Let n = number of entries

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime, take 2

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

visits n entries (total)
could it be O(n)?

visits C buckets

Let C = array size (capacity)
Let n = number of entries

We can’t have duplicate keys: all (k,v) pairs were already in the map!

Consequence: we don’t need to search the bucket when rehashing

0

11
2
3
4
5
6
7
8
9

Rehashing: Runtime, take 2

Rehashing algorithm:

for each bucket b:
 for each element e in b:
 put e into the new array

10 “bear”

14 “cat”

11 “auk” 1 “dog”

24 “ape”

visits n entries (total)
could it be O(n)?

visits C buckets

Let C = array size (capacity)
Let n = number of entries

Overall runtime is:
• worst-case O(C + n)

We can’t have duplicate keys: all (k,v) pairs were already in the map!

Consequence: we don’t need to search the bucket when rehashing

How do we hash things that
aren't integers?

Hashing Multiple Integers
• Various heuristic methods:

• (a + b + c + d) % N

• (ak^1 + bk^2 + ck^3 + dk^4) % N

Hashing Strings
• Interpret ASCII (or unicode) representation as an

integer.

• Java String uses:  
s[0]*31^(n-1) + s[1]*31^(n-2)+ … +s[n-1]

Hashing in Java
• Object has a hashCode method.

• Scenario 1: You are using a class that
someone else wrote.

• All Java objects (i.e., non-primitive types)

inherit from Object.

• If you want to put an instance of the class in

a hash table, you don’t need to know how to
hash it!

• Just call its hashCode method.

By default, this returns the object’s address in memory.

Collision Resolution
• Chaining - use a LinkedList to store multiple

elements per bucket.

• Open Addressing - use empty buckets to
store things that belong in other buckets.

• Need some scheme for deciding which buckets to look in.

Open Addressing with
Linear Probing

• Open Addressing - use empty buckets to
store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0
1
2
3
4

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value

Open Addressing with
Linear Probing

• Open Addressing - use empty buckets to
store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0
1 (1, dog)
2
3
4

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value

Open Addressing with
Linear Probing

• Open Addressing - use empty buckets to
store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0
1 (1, dog)
2 (11, auk)
3
4

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value

Open Addressing with
Linear Probing

• Open Addressing - use empty buckets to
store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0 (10, bear)
1 (1, dog)
2 (11, auk)
3
4

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value

Open Addressing with
Linear Probing

• Open Addressing - use empty buckets to
store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0 (10, bear)
1 (1, dog)
2 (11, auk)
3
4 (14, cat)

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value

Open Addressing with
Linear Probing

• Open Addressing - use empty buckets to
store things that belong in other buckets.

• Which empty bucket? Using the next
empty one is called Linear Probing

0 (10, bear)
1 (1, dog)
2 (11, auk)
3 (24, ape)
4 (14, cat)

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value

Open Addressing with
Linear Probing

• Problem with linear probing:

• Hashing clustered values (e.g., 1, 1, 3, 2, 3, 4, 6, 4, 5)
will result in a lot of searching.

0 (10, bear)
1 (1, dog)
2 (11, auk)
3 (24, ape)
4 (14, cat)

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):
 h = hash(key);
 while A[h] is full:
 h = (h+1) % N
 A[h] = value

Open Addressing with
Quadratic Probing

• Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

0 (10, bear)
1 (1, dog)
2 (11, auk)
3 (24, ape)
4 (14, cat)

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

put(key):
 H = hash(key);
 i = 0;
 while A[h] is full:
 h = (H + i2) % N
 i++;
 A[h] = value

Linear probing looks at H, H+1, H+2, H+3, H+4, …
Quadratic probing looks at H, H+1, H+4, H+9, H+16, …

Open Addressing with
Quadratic Probing

• Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

0 (10, bear)
1 (1, dog)
2 (11, auk)
3 (24, ape)
4 (14, cat)

put(1, “dog”);

put(11, “auk”);

put(10, “bear”);

put(14, “cat”);

put(24, “ape”);

Linear probing looks at H, H+1, H+2, H+3, H+4, …
Quadratic probing looks at H, H+1, H+4, H+9, H+16, …

put(key):
 H = hash(key);
 i = 0;
 while A[h] is full:
 h = (H + i2) % N
 i++;
 A[h] = value

Open Addressing with
Quadratic Probing

• Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

put(0, “ape”);

put(1, “dog”);

put(20, “elf”);

put(21, “auk”);

put(40, “bear”);

put(41, “cat”);

put(60, “elk”);

put(61, “imp”);

Exercise: Which buckets are full after the following insertions into
an array size of 10 using quadratic probing?

put(key):
 H = hash(key);
 i = 0;
 while A[h] is full:
 h = (H + i2) % N
 i++;
 A[h] = value

Open Addressing with
Quadratic Probing

• Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

put(0, “ape”);

put(1, “dog”);

put(20, “elf”);

put(21, “auk”);

put(40, “bear”);

put(41, “cat”);

put(60, “elk”);

put(61, “imp”);

Exercise: Which buckets are full after the following insertions into
an array size of 10 using quadratic probing?

0
1
0, 1, 4
1, 2
0, 1, 4, 9
1, 2, 5
0, 1, 4, 9, 6
1, 2, 5, 10, 7

put(key):
 H = hash(key);
 i = 0;
 while A[h] is full:
 h = (H + i2) % N
 i++;
 A[h] = value

Open Addressing: Runtime
• May be faster, but may not be. Depends on

keys.

• There’s no free lunch: worst-case is always O(n).

• In practice, average-case is O(1) if you make
good design decisions and insertions are not
done by an adversary.

Further Reading
• CLRS 11.5: Perfect Hashing

• You can guarantee O(1) lookups and insertions if the
set of keys is fixed

• C++ implementations from Google:

• sparse_hash_map - optimized for memory overhead

• dense_hash_map - optimized for speed

Map and HashMap
• Map is an ADT

• HashMap is an implementation of a Map using a
Hash Table.

• TreeMap is a thing too - some of you already wrote
one!

• AVL tree: store a key and a value in each node; BST property
applies to keys only

• Example: TreeMap<String, Integer> maps words to the number of
times they have been seen

TreeMap vs HashMap
• Runtime of put, get, and remove:

• TreeMap has O(log n) worst and expected

• HashMap has O(1) expected, O(n) worst; better in
practice

• Other considerations:

• TreeMaps enable sorted traversal of keys

• HashMaps are space-inefficient if load factor is small

