CSCI 241

Lecture 18
HashMap, Rehashing, Hash Functions, Open Addressing

Announcements

 Midterm grading is underway

e Lab 7 is forthcoming (out today or
tomorrow)

Goals

e Know how to implement Set and Map using hash
tables.

* Know how to respond to large hash table load
factors by resizing the array and rehashing.

e Know how to avoid linked list buckets using open
addressing with linear or quadratic probing.

e Know how to use the hashCode method of java
objects.

Origins of the term “hash”

History [edit]

The term "hash" offers a natural analogy with its non-technical meaning (to "chop" or "make a mess" out of something), given how hash functions
scramble their input data to derive their output.['®] In his research for the precise origin of the term, Donald Knuth notes that, while Hans Peter
Luhn of IBM appears to have been the first to use the concept of a hash function in a memo dated January 1953, the term itself would only
appear in published literature in the late 1960s, on Herbert Hellerman's Digital Computer System Principles, even though it was already
widespread jargon by then.[20]

https://en.wikipedia.org/wiki/Hash_function#History

Implementing Set<V>

h(k) = k % A.length

e Use a HashTable!

* Hash the key to determine array index

e Store values in array
e add(14): (14 % 10) => 4
e add(10): (10 % 10) => 0
e add(1): (1 % 10) => 1

e add(11): (11 % 10) => 1

© 0O NO O b WOWDN 2O

»10

> 1

_|
_|

=
S

1111 1+11

Implementing Set<V>

e Use a HashTable! h(k) = k % A.length

* Hash the key to determine array index

e Store values in array 0 Jio | 1
1 > 1 » 11
e add(14): (14 % 10) => 4 > —
3 —
e add(10): (10 % 10) =>0 4 w14 4+
5 —
e add(1): (1 % 10) => 1=_ 6 —
(collision) 7 —
. add(11): (11 % 10) => 1 8 —
9 —

The Map Interface

J
public interface Map<g, {
/** Returns the value to which the specified key

* is mapped, or null if this map contains no

@%&5 ot beet Kev):
V get(Object kezzj//)

/** Associates the specified value with the
* specified key in this map */
V put (K key, V value);

/** Removes the mapping for a key from this map
* if it is present */

V remove (Object key);
(\

// more methods

Map<Integer,String>

e Use a HashTable!

* Hash the key to determine array index

e Store values in array,| o Jupearn| +—

> 1 »“dog” »“auk”| -
2 —
. . 3 —

(k) =K 4 »ucat” | —>|“ape”| ™
pu 5 —
put(11, “auk”); 6 —
put(10, “bear”); 7 —
put(14, “cat”); 8 —
put(24, “ape”); 9 —

Map<Integer,String>

e Use a HashTable!

* Hash the key to determine array index

 Store values in array “bear”] +
“dog” »“auk”| —
0] N
h(k) = k % A.length Toatn —{(rape L
N/

put(14 Cat”
put(24, “ape”)

© 0O ~NOOA®WN 2O
||
I I I I Y N O

put(1, “dog”);

put(11, “auk”

putg10 bear”) 4)
(

Map<Integer,String>

e Use a HashTable (or a HashSet of Key-Value pairs)

 Hash the key to determine array index

o Store-values-in-array 0 10 ["bear”| -
1 »1|“dog”| —11|“auk”|
e Store (K,V) pairs in 2 —
the array. 3 b
4 {\@Cca‘gL} »24 |“ape”| H
put(1, “dog”); 5 —
put(11 “auk”); 6 — /
put bear (% 7 1V
“cat”) %93 8 —
put(24 ‘ape) 9 —

Hash Tables: Load Factor

)

entries in table

size of the array

f

Hash Tables: Load Factor

How full is your hash table?

entries in table

Load factor A =
size of the array

The average bucket size is A.

/
Average-case runtime is O(A).

Hash Tables: Load Factor

entries in table

size of the array

Hash Tables: Load Factor

entries in table
Load factor A =

size of the array

Average-case runtime is O(M).
e [f Ais large, runtime is slow.
e If Ais small, memory is wasted.

Strategy: grow or shrink array when A gets too
large or small.

Shrinking the array

Requires rehashing: put each element where in belongs in the
new array.

0 »10 |“bear” | —
1 »1|“dog”| -—T*|11|“auk”
2
3 —
4 »14 |“cat” |—24 |“ape”
5 —
6 —
7 —
5 — 0
9 — 1
2

Shrinking the array

Requires rehashing: put each element where in belongs in the

L[K)c X U b 3

new array.

0 *»10 “bear” | ——]

4,/
1 > 1|“dog” B 11| “auk”
2 —
3 —
4 »14 |“cat” |—24 |“ape”
5 —
6 —
7 — -
8 —
9 — AR

2

(10 % 3) -> 1
i

»10

') bear n

Shrinking the array

Requires rehashing: put each element where in belongs in the
new array.

0 »10 |“bear” | —— (10 9% 3) -> 1

1 »1|“dog”| —*|11|“auk” (1 % 3) -~ 1

2 —

3 —

4 »14 |“cat” |—24 |“ape”

5 —

6 —

7 —

5 — 0

9 1y 1 » 10 |“bear” »1|“dog”| —
2

Shrinking the array

Requires rehashing: put each element where in belongs in the

new array.
0 »10 |“bear” | —
1 > 1| “dog” 11| “auk”
2
3 —
4 »14 |“cat” |—24 |“ape”
5 —
6 —
7 —
5 — 0
9 — 1

(10 % 3) -> 1
(1% 3)->1
(11 % 3) -> 2

\ 4

10

') bear n

\4
—

“dog” |

11 s

auk”

Shrinking the array

Requires rehashing: put each element where in belongs in the
new array.

0 | —f10[vear | 44 (10 % 3) -> 1

1 »1|“dog”| —T*11|"”auk” (1 % 3) -> 1

§ _:: (11 % 3) -> 2

4 »14 |“cat” |—"24 |“ape” (14 % 3) -> 2

5 —

6 —

7

g — °

9 Ly 1 »10 |“bear” »1|“dog”| —
2 11| “auk”| —* 14 |“cat” |

Requires rehashing: put each element where in belongs in the

Shrinking the array

new array.

0 »10 [“bear” | —+ (10 % 3) >

; _>| 1|“dog” =~ 11| “auk” (1 %)

s | Ly (11 % 3) ->

4 »14 |“cat” |—24 |“ape” (14 %)

5 (24 % 3) -> o

6 —

7 —

5 L 0 »24 |“ape”| 1

9 1y 1 » 10 |“bear” »1|“dog”
2 » 11| “auk” »14 [“cat”

Growing the array

Also requires rehashing: put each element where in belongs in
the new array.

Exercise: Grow the array to size 6 and rehash:

0 »24 |“ape” —

1 »10 |“bear” > 1 |“dog”| —
2 »11| “auk”| —*14 |“cat” | ™
3

» ‘“)ow)y &WW/M‘S
ja% are in the most full bucket?

,\) Q. |

b. C
- c. 2
d. ¢«

OO~ WON-—=2O

Rehashing: Runtime

Let N = array size

0 »10 |“bear” | — Le{,n = number of entries
1 »|1|“dog”| —*|11|“auk” A

2 —

3 —

4 »14 |“cat”|—24 |“ape” /\/ + /](\/\;@(H{)Q{/OQ 3’%79
5 —

6 —

r visits N buckets

S _:: Rehashing algorithm: l visits n entries (t

l could be O(n) =(

for each bucket\g?*ﬁ-§> l
Oor each element e 1 R [
% L1 it

+n Put e 1into the new array

Rehashing: Runtime, take 1

© 0O NO O b WN = O

»10 |“bear” | —
»1|“dog” » 11| “auk”
o
o
»14 |“cat” |24 |“ape”
—
o
o
_:: Rehashing algorithm:

for each bucket b:

Let C = array size
Let n = number of entries

for each element e in b:
put e into the new array

Rehashing: Runtime, take 1

Let'C = array size

© 0O NO O b WN = O

»10 [“bear” | —— Let n = number of entries
»1|“dog” » 11| “auk”

—

—
»14 |“cat” |24 |“ape”

—

—

— visits C buckets

_:: Rehashing algorithm: l

for each bucket b:
for each element e in b:
put e into the new array

Rehashing: Runtime, take 1

© 0O NO O b WN = O

»10 |“bear” | —|—
»|1|“dog”| —*|11|“auk”
]
]
»14 |“cat” |24 |“ape”
—
]
]
]
]

Let C = array size
Let n = number of entries

visits C buckets

Rehashing algorithm: l visits n entries (total)

for each bucket b: l
for each element e in b:
put e into the new array

Rehashing: Runtime, take 1

© 0O NO O b WN = O

Let C = array size

»10 |“bear” | — Let n = number of entries
>»1|“dog”| —t*11|“auk”

—

—
»14 |“cat” |24 |“ape”

—

—

— visits C buckets

_:: Rehashing algorithm: l visits n entries (total)

for each bucket b: l

could be O(n) =(

for each element e in b: l

put e into the new array

Rehashing: Runtime, take 1

© 0O NO O b WN = O

Let C = array size

»10 |“bear” | — Let n = number of entries
»1|“dog” > 11| “auk”

—

— Overall runtime is:

»14 |“cat”|—*24 |“ape” e worst-case O(C + n?)
— e average-case O(C + n)
—

— visits C buckets
_:: Rehashing algorithm: l visits n entries (total)

for each bucket b: l

could be O(n) =(

for each element e in b: l

put e into the new array

Rehashing: Runtime, take 2

© 0O NO O b WN = O

Let C = array size (capacity)

\ 4

10

“bear” | —+— Let n = number of entries

udog" —_— 11 u auk"

|
B R

14

ucatn > 24 uape"

|
ITrrrry

visits C buckets
Rehashing algorithm: l visits n entries (total)

for each bucket b: l
for each element e in b:
put e into the new array

Rehashing: Runtime, take 2

© 0O NO O b WN = O

»10 |“bear” | ——
»1|“dog” 11| “auk”
—H
—H
»14 |“cat” |24 |“ape”
o
—H
—H
'_j for each bucket b: l

Let C = array size (capacity)
Let n = number of entries

visits C buckets

Rehashing algorithm: l visits n entries (total)

could it be O(n)?

for each element e in b: l

put e into the new array

Rehashing: Runtime, take 2

© 0O NO O b WN = O

»10 |“bear” | —|—
»1|“dog” » 11| “auk”
—H
—H
»14 |“cat” |24 |“ape”
o
—H
—H
'_j for each bucket b: l

Let C = array size (capacity)
Let n = number of entries

visits C buckets

Rehashing algorithm: l visits n entries (total)

could it be O(n)?

for each element e in b: l

put e into the new array

We can’t have duplicate keys: all (k,v) pairs were already in the map!
Consequence: we don’t need to search the bucket when rehashing

Rehashing: Runtime, take 2

© 0O NO O b WN = O

»10 |“bear” | ——
»1|“dog” » 11| “auk”
—H
—H
»14 |“cat” |24 |“ape”
o
—H
—H
'_j for each bucket b: l

Let C = array size (capacity)
Let n = number of entries

Overall runtime is:
e worst-case O(C + n)

visits C buckets

Rehashing algorithm: l visits n entries (total)

could it be O(n)?

for each element e in b: l

put e into the new array

We can’t have duplicate keys: all (k,v) pairs were already in the map!
Consequence: we don’t need to search the bucket when rehashing

How do we hash things that
aren't integers?

Hashing Multiple Integers

e Various heuristic methods:

e @+b+c+d) %N

e (akM + bkN2 + ck”3 + dk”4) % N

Hashing Strings

e Interpret ASCII (or unicode) representation as an
integer.

e Java String uses:
s[0]*31"(n-1) + s[1]*31"(n-2)+ .. +s[n-1]

Hashing in Java

e Object has a hashCode method.

By default, this returns the object’s address in memory.

e Scenario 1: You are using a class that
someone else wrote.

e All Java objects (i.e., non-primitive types)
inherit from Object.

e |f you want to put an instance of the class in

a hash table, you don’t need to know how to
hash it!

e Just call its hashCode method.

Collision Resolution

e Chaining - use a LinkedList to store multiple
elements per bucket.

e Open Addressing - use empty buckets to
store things that belong in other buckets.

* Need some scheme for deciding which buckets to look in.

Open Addressing with
Linear Probing

e Open Addressing - use empty buckets to
store things that belong in other buckets.

 Which empty bucket? Using the next
empty one is called Linear Probing

put(1, dog”);
put(11, “auk”);
put(10 “bear”);
put(14, “cat”);
put(24, “ape”);

A W N 2 O

put (key):
h = hash(key);
while A[h] is full:
h (h+1) ¢ N
Alh] value

Open Addressing with
Linear Probing

e Open Addressing - use empty buckets to
store things that belong in other buckets.

 Which empty bucket? Using the next
empty one is called Linear Probing

put(1, dog”);
put(11, “auk”);
put(10 “bear”);
put(14, “cat”);
put(24, “ape”);

A W N 2 O

(1, dog)

put (key):
h = hash(key);
while A[h] is full:
h (h+1) ¢ N
Alh] value

Open Addressing with
Linear Probing

e Open Addressing - use empty buckets to
store things that belong in other buckets.

 Which empty bucket? Using the next
empty one is called Linear Probing

put(1, dog”);
put(11, “auk”);
put(10 “bear”);
put(14, “cat”);
put(24, “ape”);

~ W0 N =2+ O

>

(1, dog)
11, auk)

put (key):
h = hash(key);
while A[h] is full:
h (h+1) ¢ N
Alh] value

Open Addressing with
Linear Probing

e Open Addressing - use empty buckets to
store things that belong in other buckets.

 Which empty bucket? Using the next
empty one is called Linear Probing

put(1, dog”);
put(11, “auk”);
put(10 “bear”);
put(14, “cat”);
put(24, “ape”);

~ W0 N =2+ O

(10, bear)
(1, dog)
(11, auk)

put (key):
h = hash(key);
while A[h] is full:
h (h+1) ¢ N
Alh] value

Open Addressing with
Linear Probing

e Open Addressing - use empty buckets to
store things that belong in other buckets.

 Which empty bucket? Using the next
empty one is called Linear Probing

put(1, dog”);
put(11, “auk”);
put(10 “bear”);
put(14, “cat”);

—>

~ W0 N =2+ O

(10, bear)
(1, dog)
(11, auk)

(14, cat)

put (key):
h = hash(key);
while A[h] is full:
h (h+1) ¢ N
Alh] value

Open Addressing with
Linear Probing

e Open Addressing - use empty buckets to
store things that belong in other buckets.

 Which empty bucket? Using the next
empty one is called Linear Probing

put(1, dog”);
put(11, “auk”);
put(10 “bear”);
put(14, “cat”);
put(24, “ape”);

(

~ W0 N =2+ O

(10, bear)
(1, dog)
(11, auk)
(24, ape)
(14, cat)

put (key):
h = hash(key);
while A[h] is full:
h (h+1) ¢ N
Alh] value

Open Addressing with
Linear Probing

* Problem with linear probing:

e Hashing clustered values (e.g., 1, 1, 3, 2, 3, 4, 6, 4, 5)
will result in a lot of searching.

put(1, “dog”);
put(11, “auk”);
put(10, “bear”);
put(14, “cat”);
put(24, “ape”);

~ W0 N =2+ O

(10, bear)
(1, dog)
(11, auk)
(24, ape)
(14, cat)

put (key):
h = hash(key);
while A[h] is full:
h (h+1) ¢ N
Alh] value

Open Addressing with
Quadratic Probing

e Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

b)

Linear probing looks at H, H+1, H+2, H+\C/3, H+4, ...

Quadratic probing looks at IT'_I H+J\, H+

put(1, “dog”);
put(11, “auk”);
put(10, “bear”);
put(14, “cat”);
put(24, “ape”);

[

~ W0 N =2+ O

(10, bear)
(1, dog)
(11, auk)
(24, ape)
(14, cat)

4, H+9, H+16, ...
T 1
put (key) :
H = hash(key);
i = 0;
while A[h] is full:
h = (H + i2) ¢ N
i++;

A[h] = value

Open Addressing with
Quadratic Probing

e Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

Linear probing looks at H, H+1, H+2, H+3, H+4, ...
Quadratic probing looks at H, H+1, H+4, H+9, H+16, ...

put(1, “dog”);
put(11, “auk”);
put(10, “bear”);
put(14, “cat”);
put(24, “ape”);

~ W0 N =2+ O

(10, bear)
(1, dog)
(11, auk)
(24, ape)
(14, cat)

put (key

) :
H = hash(key);
i = 0;
while A[h] is full:
h = (H + i2) ¢ N
i++;
A[h] = value

Open Addressing with
Quadratic Probing

e Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

Exercise: Which buckets are full after the following insertions into
an array size of 10 using quadratic probing?

putg ‘ape”); 0’

put(l), “dog”); S put (key) :

put(2 “ehc” il H = hash(key);

put(2(), “auk”) “l20 i=0;

put(ég “bear 2@% while A[h] is full:
put(4), cat) 2o h = (H + 1i%) % N
put(6Q, “elk”); 4 it++;

put(6 ,“imp”); | Lo Alh] = value

Open Addressing with
Quadratic Probing

e Quadratic Probing: Jump further ahead to
avoid clustering of full buckets.

Exercise: Which buckets are full after the following insertions into
an array size of 10 using quadratic probing?

put(0, “ape”); 0

put(1, “dog”); 1 put (key) :

put(20, “elf”); 0,1,4 H = hash(key);
put(21, “auk™; 1,2 i=0;

put(40, “bear”); 0, 1,4,9 while A[h] is full:
put(41, “cat”); 1,2,5 h = (H+ i2) & N
put(60 “elk”); 0,1,4,9,6 it++;

put(61, “imp”); 1,2,5,10,7 Afh] = value

Open Addressing: Runtime

 May be faster, but may not be. Depends on
keys.

e There’s no free lunch: worst-case is always O(n).

e In practice, average-case is O(1) if you make
good design decisions and insertions are not
done by an adversary.

Further Reading

e CLRS 11.5: Perfect Hashing

* You can guarantee O(1) lookups and insertions if the
set of keys is fixed

e C++ implementations from Google:

e sparse_hash_map - optimized for memory overhead

e dense_hash_map - optimized for speed

Map and HashMap

e Map is an ADT

e HashMap is an implementation of a Map using a
Hash Table.

e TreeMap is a thing too - some of you already wrote
onel!

* AVL tree: store a key and a value in each node; BST property
applies to keys only

* Example: TreeMap<String, Integer> maps words to the number of
times they have been seen

TreeMap vs HashMap

 Runtime of put, get, and remove:
 TreeMap has O(log n) worst and expected

* HashMap has O(1) expected, O(n) worst; better in
practice

e Other considerations:
* TreeMaps enable sorted traversal of keys

* HashMaps are space-inefficient if load factor is small

