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Lecture 15:
Priority Queues
Heaps




Announcements

e Quiz today: the usual

A2 is due Monday night



Goals

- Understand the purpose and interface of the

Priority Queue ADT.

« Know the definition and properties of a heap.

« Know how heaps are stored in practice.

- Know how to perform (on paper) and

implement (in code) add, peek, and poll.
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Abstract Data Types

- Iinterface List defines an “abstract data type”
- It has public methods: add, get, remove, ...
- Various classes implement List:

ArrayList LinkedList
my c?&ged nodes
Of(n)

O(n)
O(1)
O(1
O(1)
O(1)




Collection Interface
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Our next two topics (and the subject of A3):
* Priority Queues
e Hashing, HashSets, HashMaps



Priority Queues




Queue vs Priority Queue
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=

add (enqueue): add, (enqueue):
inserts an item into the queue  inserts an item into the queue

remove (dequeue): remove (poll):
removes the first item to be remove the highest-priority
inserted (FIFO) item from the queue



Uses for Priority Queues

Computer Graphics: mesh simplification
Graph algorithms: shortest paths, spanning trees
Statistics: maintain largest M values in a sequence

Graphics and simulation: "next time of contact" for
colliding bodies

Al Path Planning: A* search (e.g., Map directions)
Operating systems: load balancing, interrupt handling
Discrete optimization: bin packing, scheduling



Priority Queues

Like a Queue, but:

* Each item in the queue has an associated priority
which is some type that implements Comparable

“fremove() returns item with the “highest priority”

e or, the element with the-“smallest” associated
priority value

* Ties are broken arbitrarily



interface PriorityQueue<E> {

boolean add(E e); // insert e

E peek(); // return min element

E poll(); // remove/return min element
volid clear();

boolean contains(E e);

boolean remove(E e);

int size();

Tterator<E> iterator();



Priority Queue: LinkedList

implementation
An unardered list:
« add() - new element at front of list - O[ ))
* poll() - requires searching the list -
* peek() - requires searching the list -

An ordered list:

» add() - requires searching the list - OU\>
e poll() - min element is kept at front -

* peek() - min element is kept at front -

Exercise: fill in all the runtimes.



Priority Queue: LinkedList
implementation

An unordered list:

* add() - new element at front of list - O(1)

* poll() - requires searching the list - O(n)

* peek() - requires searching the list - O(n)

An ordered list:

* add() - requires searching the list - O(n)

* poll() - min element is kept at front - O(1)
* peek() - min element is kept at front - O(1)



Question to ponder:

What would be the runtime of add, peek, and poll if
you implement a Priority Queue using a BST?

What about an AVL tree?



Priority Queue: heap implementation

A heap is a concrete data structure that can be used to
implement a Priority Queue

« Better runtime complexity than either list implementation:

o peek() is O(1) )00) 0 '
e poll() is O(log n) = N |
e add() is O(log n) \ Y
L lc o
. g J loco
* Not to be confused withcheap memory, where the Java

virtual machine allocates space for objects — different
usage of the word heap.



A heap Is a special binary tree
with two additional properties.




A heap Is a special binary tree.

1. Heap Order Invariant:
Each element > its parent.

4

T T
/\ /\
21 3 9 35

/N N/

22| |38 |[55| |10 20




A heap Is a special binary tree.

1. Heap Order Invariant:
Each element > its parent.
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A heap Is a special binary tree.

1. Heap Order Invariant:
Each element > its parent.
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A heap Is a special binary tree.

2. Complete: no holes!

« All levels except the last ar
 Nodes in last level are as far left as possible,
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A heap Is a special binary tree.

2. Complete: no holes!
* All levels except the last are full.
 Nodes in last level are as far left as possible.

Full: 4

/ \
Full: 6 14
Full: |21 8 9 35

/SN /NS

22| 38| |55 |10 20




A heap Is a special binary tree.

2. Complete: no holes!
* All levels except the last are full.
 Nodes in last level are as far left as possible.

Full: 4

/ \
Full: 6 14
Full: |21 8 9 35

/SN /NS

22| [38| |55 |10 | |20 ]|« asfar left as possible




EB Heap It real
s & X (@
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Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete



68 Heap It real.

(A (B © (D)
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Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete



@ Heap It real.

(A) (B © (D)
5 5 5 -5
/ \ / /\ / \
12 15 12 12 15 12 15
/ \ / \ / / \ /N /
13 11 13 14 13 15 16 18 13 15

Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete



Heap it real.
(g) (I?%

/\ / \
12 15 12 15
/ / \ / \ /
13 15 16 18 13 15

Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete



Heap it real.

(D)

15

18 13 15

Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete



Heap it real.

Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete



Heap operations

interface PriorityQueue<E> {
bééiégg;aggiijgjb // insert e

E peek(); // return min element

E poll(); // remove/return min element
volid clear();

boolean contains(E e);

boolean remove(E e);

int size();

Iterator<E> iterator();




void add(E e);

Algorithm:
* Add e in the wrong place
* While e is in the wrong place
* move e towards the right place



void add(E e);
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void add(E e);
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void add(E e);
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void add(E e);
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void add(E e);

Algorithm:

* Add e in the wrong place (the leftmost empty leaf)

* While e is in the wrong place (it is less than its parent)
* move e towards the right place (swap with parent)

The heap invariant is maintained!



Runtime??

If k is less than h, the height of the tree,
how many nodes are at depth k?
A. We can't know for sure

B. 2k
C. 2¢1
D. 2k-1



Runtime”
b
Mhe height of the tree,

how many nodes are at depth k?
A. We can't know for sure
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Runtime?

Depth Wodes

If k is less than h, the height of the tree,
0 \
how many nodes are at depth k? 1
A. We can't know for sure 2
k S
B. 2k 4
C. 2« 7 5
D. 2k-1 °
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So... runtime”?

O(Sm/g) : an}%/\/uz/og Swap
o) o))
|
O( W)
h »n ol “\>
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Runtime.



Runtime.

* O(number of swap/bubble operations) = O(height)



Runtime.

* O(number of swap/bubble operations) = O(height)

 Complete => balanced => h is O(log n)



Runtime.

* O(number of swap/bubble operations) = O(height)

 Complete => balanced => h is O(log n)

* Maximum number of swaps is O(log n)



add(e)

Algorithm:

* Add e in the wrong place (the leftmost empty leaf)

* While e is in the wrong place (it is less than its parent)
* move e towards the right place (swap with parent)

The heap invariant is maintained!



Implementing Heaps



Implementing Heaps

public class {

private int wvalue;
private HeapNode left;
private HeapNode right;

) y
public class Heap {
HeapNode root;



Implementing Heaps

public class HeapNope {
private int value;
private HeapNope left;
private HeapNope right;




Implementing Heaps

public class HeapNope {
private int value;
private HeapNope left;
private HeapNope right;




A heap Is a special binary tree.

2. Complete: no holes!
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Numbering Nodes

Level-order traversal:

0|4
/7‘\;
1 |6 5 [14
A /\
3 21 4|8 519 6
/N /N /
22| 38| [55] [10] |20
7 8 9 10 11




Numbering Nodes

0

g
1
/\

4
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Level-order traversal:

14

3 21 4|8 5 1
/N /NN /
22| 38| [55]| [10]| [20
7 8 9 10

2. Complete

Coohoist




Numbering Nodes
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node k’s parent is UC'O/Z
node k’s children are nodes Zt+| and 2L+
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Numbering Nodes

/ "\,
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node k’s parent is (k — 1)/2
node k’s children are nodes 2k + 1 and 2k + 2



Implementing Heaps

public class Heap<E> {
private E[] heap;
private int size;

}

&
0O 1 2 4 5 6 7 8 9 10 11 12 13 14 15

4 16 14,211 8 (1935223856510 20
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Implicit Tree Structure

2. Complete: no holes!
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g% Heap It real, part 2.

Here's a heap, stored in an array:

(15767 10]
Write the array after execution of add(4).

Assume the array is large enough to
store the additional element.

A.[15767104
B.[14567107
C.[15467107] >
D. [145676710]



