
CSCI 241
Lecture 15:

Priority Queues

Heaps

www.mainjava.com www.heapson.com

Announcements
• Quiz today: the usual

• A2 is due Monday night

Goals
• Understand the purpose and interface of the

Priority Queue ADT.

• Know the definition and properties of a heap.

• Know how heaps are stored in practice.

• Know how to perform (on paper) and
implement (in code) add, peek, and poll.

Abstract Data Types
• interface List defines an “abstract data type”

• It has public methods: add, get, remove, …

• Various classes implement List:

Class: ArrayList LinkedList
Backing storage: array chained nodes

add(i, val) O(n) O(n)
add(0, val) O(n) O(1)
add(n, val) O(1) O(1)

get(i) O(1) O(n)
get(0) O(1) O(1)
get(n) O(1) O(1)

Our next two topics (and the subject of A3):

• Priority Queues
• Hashing, HashSets, HashMaps

Priority Queues

www.mainjava.com

Queue vs Priority Queue

www.mainjava.

add (enqueue):

inserts an item into the queue

remove (dequeue):

removes the first item to be

inserted (FIFO)

add (enqueue):

inserts an item into the queue

remove (poll):

remove the highest-priority

item from the queue

Uses for Priority Queues

• Computer Graphics: mesh simplification
• Graph algorithms: shortest paths, spanning trees
• Statistics: maintain largest M values in a sequence
• Graphics and simulation: "next time of contact" for

colliding bodies
• AI Path Planning: A* search (e.g., Map directions)
• Operating systems: load balancing, interrupt handling
• Discrete optimization: bin packing, scheduling

Priority Queues
Like a Queue, but:
• Each item in the queue has an associated priority

which is some type that implements Comparable
• remove() returns item with the “highest priority”

• or, the element with the “smallest” associated
priority value

• Ties are broken arbitrarily

interface PriorityQueue<E> {
 boolean add(E e); // insert e
 E peek(); // return min element
 E poll(); // remove/return min element
 void clear();
 boolean contains(E e);
 boolean remove(E e);
 int size();
 Iterator<E> iterator();
}

Priority Queue: LinkedList
implementation

An unordered list:
• add() - new element at front of list -
• poll() - requires searching the list -
• peek() - requires searching the list -

An ordered list:
• add() - requires searching the list -
• poll() - min element is kept at front -
• peek() - min element is kept at front -

Exercise: fill in all the runtimes.

Priority Queue: LinkedList
implementation

An unordered list:
• add() - new element at front of list - O(1)
• poll() - requires searching the list - O(n)
• peek() - requires searching the list - O(n)

An ordered list:
• add() - requires searching the list - O(n)
• poll() - min element is kept at front - O(1)
• peek() - min element is kept at front - O(1)

Question to ponder:

What would be the runtime of add, peek, and poll if
you implement a Priority Queue using a BST?

What about an AVL tree?

Priority Queue: heap implementation
• A heap is a concrete data structure that can be used to

implement a Priority Queue

• Better runtime complexity than either list implementation:
• peek() is O(1)
• poll() is O(log n)
• add() is O(log n)

• Not to be confused with heap memory, where the Java
virtual machine allocates space for objects – different
usage of the word heap.

A heap is a special binary tree
with two additional properties.

A heap is a special binary tree.
1. Heap Order Invariant:  

Each element its parent.
4

146

21 198 35

22 5538 10 20

≥

A heap is a special binary tree.
1. Heap Order Invariant:  

Each element its parent.
4

146

21 198 35

22 5538 10 20

≥

A heap is a special binary tree.
1. Heap Order Invariant:  

Each element its parent.
4

146

21 198 35

22 5538 10 20 !!

≥

A heap is a special binary tree.
2. Complete: no holes!

• All levels except the last are full.
• Nodes in last level are as far left as possible.

4

146

21 198 35

22 5538 10 20

A heap is a special binary tree.
2. Complete: no holes!

• All levels except the last are full.
• Nodes in last level are as far left as possible.

4

146

21 198 35

22 5538 10 20

Full:

Full:

Full:

A heap is a special binary tree.
2. Complete: no holes!

• All levels except the last are full.
• Nodes in last level are as far left as possible.

4

146

21 198 35

22 5538 10 20

Full:

Full:

Full:

as far left as possible

Heap it realWhich of the following are valid heaps?

Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete

Heap it real.Which of the following are valid heaps?

Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete

Heap it real.Which of the following are valid heaps?

Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete

Heap it real.Which of the following are valid heaps?

Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete

Heap it real.Which of the following are valid heaps?

Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete

Heap it real.Which of the following are valid heaps?

Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete

Heap operations
interface PriorityQueue<E> {
 boolean add(E e); // insert e
 E peek(); // return min element
 E poll(); // remove/return min element
 void clear();
 boolean contains(E e);
 boolean remove(E e);
 int size();
 Iterator<E> iterator();
}

void add(E e);

Algorithm:
• Add e in the wrong place
• While e is in the wrong place

• move e towards the right place

4

146

21 198 35

22 5538 10 20

void add(E e);

void add(E e);
4

146

21 198 35

22 5538 10 20 5

4

146

21

19

8 35

22 5538 10 20

5

void add(E e);

4

14

6

21

19

8 35

22 5538 10 20

5

void add(E e);

4

14

6

21

19

8 35

22 5538 10 20

5

void add(E e);

void add(E e);

Algorithm:
• Add e in the wrong place (the leftmost empty leaf)
• While e is in the wrong place (it is less than its parent)

• move e towards the right place (swap with parent)

The heap invariant is maintained!

Runtime?
If k is less than h, the height of the tree,
how many nodes are at depth k?
A. We can't know for sure
B. 2k

C. 2k-1

D. 2k - 1

Runtime?

4

146

21 198 35

22 5538 10 20

If k is less than h, the height of the tree,
how many nodes are at depth k?
A. We can't know for sure
B. 2k

C. 2k-1

D. 2k - 1

Runtime?
Depth Nodes

0
1
2
3
4
5
6
7
8
9
…
k

4

146

21 198 35

22 5538 10 20

If k is less than h, the height of the tree,
how many nodes are at depth k?
A. We can't know for sure
B. 2k

C. 2k-1

D. 2k - 1

So... runtime?

Runtime.

Runtime.
• O(number of swap/bubble operations) = O(height)  

Runtime.
• O(number of swap/bubble operations) = O(height)  

• Complete => balanced => h is O(log n)

Runtime.
• O(number of swap/bubble operations) = O(height)  

• Complete => balanced => h is O(log n)

• Maximum number of swaps is O(log n)

add(e)

Algorithm:
• Add e in the wrong place (the leftmost empty leaf)
• While e is in the wrong place (it is less than its parent)

• move e towards the right place (swap with parent)

The heap invariant is maintained!

Implementing Heaps

Implementing Heaps
public class HeapNode {
 private int value;
 private HeapNode left;
 private HeapNode right;
 ...
}
public class Heap {

HeapNode root;
...

•

public class HeapNope {
 private int value;
 private HeapNope left;
 private HeapNope right;
 ...
}
•

Implementing Heaps

public class HeapNope {
 private int value;
 private HeapNope left;
 private HeapNope right;
 ...
}
•

Implementing Heaps

A heap is a special binary tree.
2. Complete: no holes!

4

146

21 198 35

22 5538 10 20

Full:

Full:

Full:

as far left as possible

Numbering Nodes
4

146

21 198 35

22 5538 10 20

Level-order traversal:

0

1 2

3 4 5 6

7 8 9 10 11

Numbering Nodes
4

146

21 198 35

22 5538 10 20

Level-order traversal:

0

1 2

3 4 5 6

7 8 9 10 11
2. Complete: no holes!

Numbering Nodes
4

146

21 198 35

22 5538 10 20

0

1 2

3 4 5 6

7 8 9 10 11

node k’s parent is
node k’s children are nodes and

Numbering Nodes
4

146

21 198 35

22 5538 10 20

0

1 2

3 4 5 6

7 8 9 10 11

node k’s parent is (k – 1)/2
node k’s children are nodes and

Numbering Nodes
4

146

21 198 35

22 5538 10 20

0

1 2

3 4 5 6

7 8 9 10 11

node k’s parent is (k – 1)/2
node k’s children are nodes 2k + 1 and 2k + 2

Implementing Heaps
public class Heap<E> {
 private E[] heap;

private int size;
 ...
}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 6 14 21 8 19 35 22 38 55 10 20
0

Implicit Tree Structure

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 6 14 21 8 19 35 22 38 55 10 20

2. Complete: no holes!

0

4

146

21 198 35

22 5538 10 20

0

1 2

3 4 5 6

7 8 9 10 11

Heap it real, part 2.
Here's a heap, stored in an array:
 [1 5 7 6 7 10]

Write the array after execution of add(4).
Assume the array is large enough to
store the additional element.

A. [1 5 7 6 7 10 4] 
B. [1 4 5 6 7 10 7] 
C. [1 5 4 6 7 10 7] 
D. [1 4 56 7 6 7 10]

