B

: @}ma‘mjaﬂcm

Lecture 15:
Priority Queues
Heaps

Announcements

e Quiz today: the usual

A2 is due Monday night

Goals

- Understand the purpose and interface of the

Priority Queue ADT.

« Know the definition and properties of a heap.

« Know how heaps are stored in practice.

- Know how to perform (on paper) and

implement (in code) add, peek, and poll.

Collection Interface

<<interface>>
Collection

NN
<<interface>>
Queue

‘.
0
0
.
0
'0
o

<<interface>>

SortedSet LinkedList PriorityQueue

<<interface>>

NavigahleSet |V > implementS
: — extends Xt

Abstract Data Types

- Iinterface List defines an “abstract data type”
- It has public methods: add, get, remove, ...
- Various classes implement List:

ArrayList LinkedList
my c?&ged nodes
Of(n)

O(n)
O(1)
O(1
O(1)
O(1)

Collection Interface

<<interface>>

Collection

<<interface>> v <<interface>>
Set | Queue

PriorityQueue

1

1
LinkedHashSet <<'”.terfa°e>> :
Navigable St > implements
A

— extends

Our next two topics (and the subject of A3):
* Priority Queues
e Hashing, HashSets, HashMaps

Priority Queues

Queue vs Priority Queue

‘;’,‘ e LT S,
=

add (enqueue): add, (enqueue):
inserts an item into the queue inserts an item into the queue

remove (dequeue): remove (poll):
removes the first item to be remove the highest-priority
inserted (FIFO) item from the queue

Uses for Priority Queues

Computer Graphics: mesh simplification
Graph algorithms: shortest paths, spanning trees
Statistics: maintain largest M values in a sequence

Graphics and simulation: "next time of contact" for
colliding bodies

Al Path Planning: A* search (e.g., Map directions)
Operating systems: load balancing, interrupt handling
Discrete optimization: bin packing, scheduling

Priority Queues

Like a Queue, but:

* Each item in the queue has an associated priority
which is some type that implements Comparable

“fremove() returns item with the “highest priority”

e or, the element with the-“smallest” associated
priority value

* Ties are broken arbitrarily

interface PriorityQueue<E> {

boolean add(E e); // insert e

E peek(); // return min element

E poll(); // remove/return min element
volid clear();

boolean contains(E e);

boolean remove(E e);

int size();

Tterator<E> iterator();

Priority Queue: LinkedList

implementation
An unardered list:
« add() - new element at front of list - O[))
* poll() - requires searching the list -
* peek() - requires searching the list -

An ordered list:

» add() - requires searching the list - OU\>
e poll() - min element is kept at front -

* peek() - min element is kept at front -

Exercise: fill in all the runtimes.

Priority Queue: LinkedList
implementation

An unordered list:

* add() - new element at front of list - O(1)

* poll() - requires searching the list - O(n)

* peek() - requires searching the list - O(n)

An ordered list:

* add() - requires searching the list - O(n)

* poll() - min element is kept at front - O(1)
* peek() - min element is kept at front - O(1)

Question to ponder:

What would be the runtime of add, peek, and poll if
you implement a Priority Queue using a BST?

What about an AVL tree?

Priority Queue: heap implementation

A heap is a concrete data structure that can be used to
implement a Priority Queue

« Better runtime complexity than either list implementation:

o peek() is O(1))00) 0 '
e poll() is O(log n) = N |
e add() is O(log n) \ Y
L lc o
. g J loco
* Not to be confused withcheap memory, where the Java

virtual machine allocates space for objects — different
usage of the word heap.

A heap Is a special binary tree
with two additional properties.

A heap Is a special binary tree.

1. Heap Order Invariant:
Each element > its parent.

4

T T
/\ /\
21 3 9 35

/N N/

22| |38 |[55| |10 20

A heap Is a special binary tree.

1. Heap Order Invariant:
Each element > its parent.

‘7/\7‘
6 14

19 35

3
4 4
5| (10 20

A heap Is a special binary tree.

1. Heap Order Invariant:
Each element > its parent.

/\v‘

6 14

19

22

Z\

35

A heap Is a special binary tree.

2. Complete: no holes!

« All levels except the last ar
 Nodes in last level are as far left as possible,

4
e
/\ /\
21 8 9 35

/SN /NS

22| 38| |55 |10 20

A heap Is a special binary tree.

2. Complete: no holes!
* All levels except the last are full.
 Nodes in last level are as far left as possible.

Full: 4

/ \
Full: 6 14
Full: |21 8 9 35

/SN /NS

22| 38| |55 |10 20

A heap Is a special binary tree.

2. Complete: no holes!
* All levels except the last are full.
 Nodes in last level are as far left as possible.

Full: 4

/ \
Full: 6 14
Full: |21 8 9 35

/SN /NS

22| [38| |55 |10 | |20]|« asfar left as possible

EB Heap It real
s & X (@

5 5 5 =
\ / /\ / \
15 12 © 12 15 12 15

/ \ / / \ /
13 13 14 13 5 18 13 15

Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete

68 Heap It real.

(A (B © (D)
5 5 5 -5
/ \ / /\ / \
12 15 12 12 15 12 15
/ \ / \ / / \ /N /
13 11 13 14 13 15 16 18 13 15

Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete

@ Heap It real.

(A) (B © (D)
5 5 5 -5
/ \ / /\ / \
12 15 12 12 15 12 15
/ \ / \ / / \ /N /
13 11 13 14 13 15 16 18 13 15

Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete

Heap it real.
(g) (I?%

/\ / \
12 15 12 15
/ / \ / \ /
13 15 16 18 13 15

Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete

Heap it real.

(D)

15

18 13 15

Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete

Heap it real.

Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete

Heap operations

interface PriorityQueue<E> {
bééiégg;aggiijgjb // insert e

E peek(); // return min element

E poll(); // remove/return min element
volid clear();

boolean contains(E e);

boolean remove(E e);

int size();

Iterator<E> iterator();

void add(E e);

Algorithm:
* Add e in the wrong place
* While e is in the wrong place
* move e towards the right place

void add(E e);

14

35

19

void add(E e);

4

P

A

ﬁ

35

21 8
/LJ\ /\
.22\ 38| [55] [10

2(\5

void add(E e);

35

/ 7‘\

AN

21

ANV NRVAN

.22| 38

19

20

10

B

void add(E e);

4
T T

21 38 35

19

/N \ 20/\

void add(E e);

_—

6

N

21

/\

\

5

N

.22| 38

38
/\
55| |10

e

19

35

void add(E e);

Algorithm:

* Add e in the wrong place (the leftmost empty leaf)

* While e is in the wrong place (it is less than its parent)
* move e towards the right place (swap with parent)

The heap invariant is maintained!

Runtime??

If k is less than h, the height of the tree,
how many nodes are at depth k?
A. We can't know for sure

B. 2k
C. 2¢1
D. 2k-1

Runtime”
b
Mhe height of the tree,

how many nodes are at depth k?
A. We can't know for sure

b Lo

2k-1

. —_— T 4
o ko — 4] ZO \

—— |6 14 Z‘ <
N
8 19 35 @ 7
L
> %
35

Runtime?

Depth Wodes

If k is less than h, the height of the tree,
0 \
how many nodes are at depth k? 1
A. We can't know for sure 2
k S
B. 2k 4
C. 2« 7 5
D. 2k-1 °
7
3
9

>~

N w
7{ ~ J -\

22\ 38| [55] [10] [20

So... runtime”?

O(Sm/g) : an}%/\/uz/og Swap
o) o))
|
O(W)
h »n ol “\>
QACLCQD s § CC/ij Y\) \}

Runtime.

Runtime.

* O(number of swap/bubble operations) = O(height)

Runtime.

* O(number of swap/bubble operations) = O(height)

 Complete => balanced => h is O(log n)

Runtime.

* O(number of swap/bubble operations) = O(height)

 Complete => balanced => h is O(log n)

* Maximum number of swaps is O(log n)

add(e)

Algorithm:

* Add e in the wrong place (the leftmost empty leaf)

* While e is in the wrong place (it is less than its parent)
* move e towards the right place (swap with parent)

The heap invariant is maintained!

Implementing Heaps

Implementing Heaps

public class {

private int wvalue;
private HeapNode left;
private HeapNode right;

) y
public class Heap {
HeapNode root;

Implementing Heaps

public class HeapNope {
private int value;
private HeapNope left;
private HeapNope right;

Implementing Heaps

public class HeapNope {
private int value;
private HeapNope left;
private HeapNope right;

A heap Is a special binary tree.

2. Complete: no holes!

%
Full: 4
/ \
Full: 6 14
Full: 21 8 9 35

/N N/

22| |38 |95 |10 | |20« asfar left as possible

Numbering Nodes

Level-order traversal:

0|4
/7‘\;
1 |6 5 [14
A /\
3 21 4|8 519 6
/N /N /
22| 38| [55] [10] |20
7 8 9 10 11

Numbering Nodes

0

g
1
/\

4

G —

Level-order traversal:

14

3 21 4|8 5 1
/N /NN /
22| 38| [55]| [10]| [20
7 8 9 10

2. Complete

Coohoist

Numbering Nodes
4/0'4‘\

e

AN 7

22\ 38| [55] [10] |20

- I
7 8 9 10 e =
& zS

node k’s parent is UC'O/Z
node k’s children are nodes Zt+| and 2L+

Numberir

3 21

el

\

g Nodes

35

/01
/\ A
38 5/\0 /

8

9

10

11

node k’s parent is (k — 1)/2
node k’s children are nodes

Numbering Nodes

/ "\,
A A

3 21 5 35

/\ /

22\ 38| 55| [10
| 8 9 10 11

node k’s parent is (k — 1)/2
node k’s children are nodes 2k + 1 and 2k + 2

Implementing Heaps

public class Heap<E> {
private E[] heap;
private int size;

}

&
0O 1 2 4 5 6 7 8 9 10 11 12 13 14 15

4 16 14,211 8 (1935223856510 20

0

1

Implicit Tree Structure

2. Complete: no holes!

0

4

/

/\
/\

3 21

\
/\

5 35

/

22\ 38| [55] [10

"7 8 9 10

2 3 4 5 6 7

11

8 9 10 11 12 13 14 15

14121 8 |19]35| 22

3855|1020

g% Heap It real, part 2.

Here's a heap, stored in an array:

(15767 10]
Write the array after execution of add(4).

Assume the array is large enough to
store the additional element.

A.[15767104
B.[14567107
C.[15467107] >
D. [145676710]

