CSCI 241
Lecture 15:
Priority Queues
Heaps

There will be Socratic today!
Announcements

• Quiz today: the usual

• A2 is due Monday night
Goals

• Understand the purpose and interface of the Priority Queue ADT.

• Know the definition and properties of a heap.

• Know how heaps are stored in practice.

• Know how to perform (on paper) and implement (in code) add, peek, and poll.
Abstract Data Types

- **interface** `List` defines an “abstract data type”
- It has public methods: `add`, `get`, `remove`, ...
- Various classes **implement** `List`:

<table>
<thead>
<tr>
<th>Class:</th>
<th>ArrayList</th>
<th>LinkedList</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backing storage:</td>
<td>array</td>
<td>chained nodes</td>
</tr>
<tr>
<td><code>add(i, val)</code></td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td><code>add(0, val)</code></td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td><code>add(n, val)</code></td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td><code>get(i)</code></td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td><code>get(0)</code></td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td><code>get(n)</code></td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
Our next two topics (and the subject of A3):

- **Priority Queues**
- Hashing, HashSets, **HashMaps**
Priority Queues
Queue vs Priority Queue

add (enqueue): inserts an item into the queue
remove (dequeue): removes the first item to be inserted (FIFO)

add (enqueue): inserts an item into the queue
remove (poll): remove the highest-priority item from the queue
Uses for Priority Queues

- Computer Graphics: mesh simplification
- Graph algorithms: shortest paths, spanning trees
- Statistics: maintain largest M values in a sequence
- Graphics and simulation: "next time of contact" for colliding bodies
- AI Path Planning: A* search (e.g., Map directions)
- Operating systems: load balancing, interrupt handling
- Discrete optimization: bin packing, scheduling
Priority Queues

Like a Queue, but:

• Each item in the queue has an associated priority which is some type that implements Comparable

• `remove()` returns item with the “highest priority”
 • or, the element with the “smallest” associated priority value

• Ties are broken arbitrarily
interface PriorityQueue<E> {
 boolean add(E e); // insert e
 E peek(); // return min element
 E poll(); // remove/return min element
 void clear();
 boolean contains(E e);
 boolean remove(E e);
 int size();
 Iterator<E> iterator();
}
Priority Queue: LinkedList implementation

An unordered list:
• **add()** - new element at front of list - $O(1)$
• **poll()** - requires searching the list -
• **peek()** - requires searching the list -

An ordered list:
• **add()** - requires searching the list - $O(n)$
• **poll()** - min element is kept at front -
• **peek()** - min element is kept at front -

Exercise: fill in all the runtimes.
Priority Queue: LinkedList implementation

An unordered list:

- **add()** - new element at front of list - O(1)
- **poll()** - requires searching the list - O(n)
- **peek()** - requires searching the list - O(n)

An ordered list:

- **add()** - requires searching the list - O(n)
- **poll()** - min element is kept at front - O(1)
- **peek()** - min element is kept at front - O(1)
Question to ponder:

What would be the runtime of add, peek, and poll if you implement a Priority Queue using a BST?

What about an AVL tree?
Priority Queue: heap implementation

- A **heap** is a **concrete** data structure that can be used to **implement** a Priority Queue

- Better runtime complexity than either list implementation:
 - **peek()** is $O(1)$
 - **poll()** is $O(\log n)$
 - **add()** is $O(\log n)$

- Not to be confused with **heap memory**, where the Java virtual machine allocates space for objects – different usage of the word heap.
A heap is a special binary tree with two additional properties.
A heap is a special binary tree.

1. **Heap Order Invariant:**
 Each element \geq its parent.
A heap is a special binary tree.

1. **Heap Order Invariant:** Each element ≥ its parent.
A heap is a special binary tree.

1. **Heap Order Invariant:**
 Each element \(\geq \) its parent.
A heap is a special binary tree.

2. **Complete**: no holes!
- All levels except the last are **full**.
- Nodes in last level are as far left as possible.
A heap is a special binary tree.

2. **Complete**: no holes!
 - All levels except the last are full.
 - Nodes in last level are as far left as possible.
A heap is a special binary tree.

2. **Complete**: no holes!
- All levels except the last are full.
- Nodes in last level are as far left as possible.

```
          4
         /   \
        6     14
       / \
      21   8
     /  \
    22   38
   / \
  55   10
 /   \
20   19  35
```

→ as far left as possible
Which of these are valid heaps?

1. Each element \geq its parent.
2. The tree is complete.
Heap it real.

Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete.
Heap it real.

Which of these are valid heaps?

1. Each element \geq its parent.
2. The tree is complete.
Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete.
Heap it real.

Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete
Heap it real.

Which of these are valid heaps?

1. Each element >= its parent.
2. The tree is complete.
Heap operations

interface PriorityQueue<E> {
 boolean add(E e); // insert e
 E peek(); // return min element
 E poll(); // remove/return min element
 void clear();
 boolean contains(E e);
 boolean remove(E e);
 int size();
 Iterator<E> iterator();
}
void add(E e);

Algorithm:
• Add e in the wrong place
• While e is in the wrong place
 • move e towards the right place
```c
void add(E e);
```
void add(E e);
void add(E e);
void add(E e);
void add(E e);
`void add(E e);`

Algorithm:
- Add `e` in the wrong place *(the leftmost empty leaf)*
- While `e` is in the wrong place *(it is less than its parent)*
 - move `e` towards the right place *(swap with parent)*

The heap invariant is maintained!
If k is less than h, the height of the tree, how many nodes are at depth k?

A. We can't know for sure
B. 2^k
C. 2^{k-1}
D. $2^k - 1$
If \(k \) is less than \(h \), the height of the tree, how many nodes are at depth \(k \)?

A. We can't know for sure
B. \(2^k \)
C. \(2^{k-1} \)
D. \(2^k - 1 \)
If k is less than h, the height of the tree, how many nodes are at depth k?

A. We can't know for sure
B. 2^k
C. 2^{k-1}
D. $2^k - 1$
So... runtime?

\[O(\text{swaps}) \cdot \text{runtime of swap} \]

\[O(h) \quad O(1) \]

\[O(h) \]

\[h = O(\log n) \]

\[\text{add(e)} \quad \in \quad O(\log n)! \]
Runtime.
Runtime.

- \(O(\text{number of swap/bubble operations}) = O(\text{height}) \)
Runtime.

- $O(\text{number of swap/bubble operations}) = O(\text{height})$
- Complete \Rightarrow balanced $\Rightarrow h$ is $O(\log n)$
Runtime.

- $O(\text{number of swap/bubble operations}) = O(\text{height})$
- Complete \Rightarrow balanced \Rightarrow h is $O(\log n)$
- Maximum number of swaps is $O(\log n)$
add(e)

Algorithm:
- Add e in the wrong place *(the leftmost empty leaf)*
- While e is in the wrong place *(it is less than its parent)*
 - move e towards the right place *(swap with parent)*

The heap invariant is maintained!
Implementing Heaps
Implementing Heaps

```java
public class HeapNode {
    private int value;
    private HeapNode left;
    private HeapNode right;
    ...
}

public class Heap {
    HeapNode root;
    ...
}
```
Implementing Heaps

```java
public class Heap
{
    private int value;
    private Heap left;
    private Heap right;
    ...
}
```
public class Heap {
 private int value;
 private Heap left;
 private Heap right;
 ...
}
A heap is a special binary tree.

2. **Complete:** no holes!

Full:
- 4
- 6
- 21
- 8
- 14
- 19
- 35
- 22
- 38
- 55
- 10
- 20

← as far left as possible
Numbering Nodes

Level-order traversal:
Numbering Nodes

Level-order traversal:

2. Complete: no holes!
Numbering Nodes

node k’s parent is $\frac{(k-1)}{2}$
node k’s children are nodes $2k+1$ and $2k+2$
Numbering Nodes

node k’s parent is $(k - 1)/2$
node k’s children are nodes and
Numbering Nodes

Node k’s parent is $(k - 1)/2$

Node k’s children are nodes $2k + 1$ and $2k + 2$
Implementing Heaps

public class Heap<E> {
 private E[] heap;
 private int size;
 ...
}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 6 14 21 8 19 35 22 38 55 10 20
Implicit Tree Structure

2. Complete: no holes!
Heap it real, part 2.

Here's a heap, stored in an array:

\[1 5 7 6 7 10]\n
Write the array after execution of \texttt{add(4)}. Assume the array is large enough to store the additional element.

A. \[1 5 7 6 7 10 4]\nB. \[1 4 5 6 7 10 7]\nC. \[1 5 4 6 7 10 7]\nD. \[1 4 56 7 6 7 10\]