CSCI 241
Lecture 14b
AVL rebalancing
Goals

• Understand how rebalance decides to what rotations to perform.

• Be prepared implement rebalance.
AVL Insertion

\[
\text{insert}(\text{Node } n, \text{ int } v):
\]

// ...(other case, irrelevant here)
else: // v > n.value
 if n has right:
 \text{insert}(n.\text{right}, v)
 else:
 // attach new node w/ value
 // v to n.\text{right}
 \text{rebalance}(n);

How did we know what rotation to do?
Reminder: Tree Rotations

\[
\text{LEFT-ROTATE}(T, x) \\
\text{RIGHT-ROTATE}(T, y)
\]
Reminder: Tree Rotations

subtrees (could be null, leaf, or tree with many nodes)

\[
\text{LEFT-ROTATE}(T, x) \quad \text{RIGHT-ROTATE}(T, y)
\]
AVL Rebalance

Before an insertion that unbalances n, the tree must look like one of these:
AVL Rebalance

Before an insertion that unbalances \(n \), the tree must look like one of these:
AVL Rebalance

Before an insertion that unbalances N, the tree must look like one of these:

An insertion that *unbalances* N could go one of four places.
AVL Rebalance

Before an insertion that unbalances n, the tree must look like one of these:

Case 1

Case 2

Case 3

Case 4

An insertion that unbalances n could go one of four places.
AVL Rebalance

Case 1: After BST insertion step, the tree looks like this.

```
   N
  /   \
 C     h \\
/     /  \h
T     V   \\
/  h+1/   \U
```
AVL Rebalance

Case 1: After BST insertion step, the tree looks like this.
Case 1: After BST insertion step, the tree looks like this.

Solution: right rotate on N.
Case 1: After BST insertion step, the tree looks like this.
Solution: right rotate on N.
AVL Rebalance

Case 1: After BST insertion step, the tree looks like this.

Solution: right rotate on N.

N is now AVL balanced.
AVL Rebalance

Before an insertion that unbalances n, the tree must look like one of these:

An insertion that unbalances n could gone one of four places.
Case 2: After BST insertion step, the tree looks like this.
Case 2: After BST insertion step, the tree looks like this.
AVL Rebalance

Case 2: After BST insertion step, the tree looks like this.

Solution - two rotations:
1. Left rotate C
2. Right rotate N
AVL Rebalance

Case 2: After BST insertion step, the tree looks like this.

Solution - two rotations:
1. **Left rotate C**
2. **Right rotate N**
AVL Rebalance

Case 2: After BST insertion step, the tree looks like this.

Solution - two rotations:
1. Left rotate C
2. Right rotate N
AVL Rebalance

Case 2: After BST insertion step, the tree looks like this.

Solution - two rotations:
1. **Left rotate C**
2. **Right rotate N**
AVL Rebalance

Case 2: After BST insertion step, the tree looks like this.

Solution - two rotations:
1. Left rotate C
2. Right rotate N
AVL Rebalance

Case 2: After BST insertion step, the tree looks like this.

Solution - two rotations:
1. Left rotate C
2. Right rotate N
AVL Rebalance

Case 2: After BST insertion step, the tree looks like this.

Solution - two rotations:
1. Left rotate C
2. Right rotate N

Tree is now AVL balanced.
AVL Rebalance

Before an insertion that unbalances n, the tree must look like one of these:

- **Case 1**
 - N_{-1}
 - C_{h+1}
 - T_h
 - U_h

- **Case 2**
 - N_{-1}
 - C_{h+1}
 - V_h

- **Case 3**
 - N_1
 - C_{h+1}
 - V_h

- **Case 4**
 - N_1
 - C_{h+1}

An insertion that unbalances n could have gone one of four places.
AVL Rebalance

Before an insertion that unbalances n, the tree must look like one of these:

Case 1

Case 2

Case 3

Case 4

An insertion that unbalances n could go to one of four places.
AVL Rebalance

Before an insertion that unbalances n, the tree must look like one of these:

Case 1

Case 2

Case 3

Case 4

An insertion that unbalances n could gone one of four places.
Before an insertion that unbalances n, the tree must look like one of these:

Case 1

Case 2

Case 3

Case 4

An insertion that unbalances n could go to one of four places.
void rebalance(n):
 if balance(n) < -1:
 if balance(n.left) < 0
 // case 1:
 // rightRot(n)
 else:
 // case 2:
 // leftRot(n.L);
 // rightRot(n)
 else if balance(n) > 1:
 if balance(n.right) < 0:
 // case 3:
 // rightRot(n.R);
 // leftRot(n)
 else:
 // case 4:
 // leftRot(n)
void rebalance(n):
 if bal(n) < -1:
 if bal(n.left) < 0
 // case 1:
 // rightRot(n)
 else:
 // case 2:
 // leftRot(n.L);
 // rightRot(n)
 else if bal(n) > 1:
 if bal(n.right) < 0:
 // case 3:
 // rightRot(n.R);
 // leftRot(n)
 else:
 // case 4:
 // leftRot(n)
void rebalance(n):
 if bal(n) < -1:
 if bal(n.left) < 0
 // case 1:
 // rightRot(n)
 else:
 // case 2:
 // leftRot(n.L);
 // rightRot(n)
 else if bal(n) > 1:
 if bal(n.right) < 0:
 // case 3:
 // rightRot(n.R);
 // leftRot(n)
 else:
 // case 4:
 // leftRot(n)
void rebalance(n):
 if bal(n) < -1:
 if bal(n.left) < 0
 // case 1:
 // rightRot(n)
 else:
 // case 2:
 // leftRot(n.L);
 // rightRot(n)
 else if bal(n) > 1:
 if bal(n.right) < 0:
 // case 3:
 // rightRot(n.R);
 // leftRot(n)
 else:
 // case 4:
 // leftRot(n)

Cases 3 and 4 are symmetric with 2 and 1
Implementation

void rebalance(n):
 if bal(n) < -1:
 if bal(n.left) < 0
 // case 1:
 // rightRot(n)
 else:
 // case 2:
 // leftRot(n.L);
 // rightRot(n)
 else if bal(n) > 1:
 if bal(n.right) < 0:
 // case 3:
 // rightRot(n.R);
 // leftRot(n)
 else:
 // case 4:
 // leftRot(n)

Cases 3 and 4 are symmetric with 2 and 1.
void rebalance(n):
 if bal(n) < -1:
 if bal(n.left) < 0
 // case 1:
 // rightRot(n)
 else:
 // case 2:
 // leftRot(n.L);
 // rightRot(n)
 else if bal(n) > 1:
 if bal(n.right) < 0:
 // case 3:
 // rightRot(n.R);
 // leftRot(n)
 else:
 // case 4:
 // leftRot(n)

Cases 3 and 4 are symmetric with 2 and 1.

Details

• Implementing bal:
 • calculating height as in lab 4 is O(n)! Not good enough.
 • Nodes track their height and update when the tree changes
 • Update each node’s height on the way up the tree, calculating height using only its children’s heights.
How did we know what rotation to do?

Insertion with Rebalance

```
insert(Node n, int v):
    // ...(other case, irrelevant here)
    else: // v > n.value
        if n has right:
            insert(n.right, v)
        else:
            // attach new node w/ value
            //   v to n.right
            rebalance(n);

insert(a, 16)
=>insert(c, 16)
    =>insert(f, 16)
        =>attach new node
            rebalance(f)
            rebalance(c)
                perform rotation
            rebalance(a) already balanced
```