
CSCI 241
Lecture 12

Binary Search Trees: insertion and removal

Announcements
• As usual:

• Quiz 3 today

• Lab 4 due Sunday

• Lab 5 out Monday

• A2 out today! Due Monday 5/11.

Announcements
• Feedback survey results

Next week: Experiment!
• Videos for Monday and Wednesday's lecture topics will

be posted over the weekend (all out by end of Monday).

• About 5 video segments cover two lectures, not
totaling more than 100 minutes.

• I will also provide practice exercises for each segment.

• M&W class periods (attendance optional): Q&A,
exercise solutions, more exercises.

• It's not office hours though - no code help.

Goals
• Know how to perform (and code) three tree traversals:

pre-order, in-order, and post-order.

• Know the definition and uses of a binary search tree.

• Be prepared to implement, and know the runtime of,
the following BST operations:

• search

• insert

• remove

Inserting into a BST

Inserting into a BST
insert(t, 11)10

8 16

4 9 11 17

t:

Inserting into a BST
insert(t, 11)10

8 16

4 9 11 17

t:

Inserting into a BST
insert(t, 11)10

8 16

4 9 11 17

t:
11 > 10

Inserting into a BST
insert(t, 11)10

8 16

4 9 11 17

t:
11 > 10
insert(right, 11)

Inserting into a BST
insert(t, 11)10

8 16

4 9 11 17

t:
11 > 10
insert(right, 11)

Inserting into a BST
insert(t, 11)10

8 16

4 9 11 17

t:
11 > 10
insert(right, 11)
11 < 16

Inserting into a BST
insert(t, 11)10

8 16

4 9 11 17

t:
11 > 10
insert(right, 11)
11 < 16

insert(left, 11)

Inserting into a BST
insert(t, 11)10

8 16

4 9 11 17

t:
11 > 10
insert(right, 11)
11 < 16

insert(left, 11)

Inserting into a BST
insert(t, 11)10

8 16

4 9 11 17

t:
11 > 10
insert(right, 11)
11 < 16

insert(left, 11)
11 == 11

Inserting into a BST
insert(t, 11)10

8 16

4 9 11 17

t:
11 > 10
insert(right, 11)
11 < 16

insert(left, 11)
11 == 11
found it! no duplicates,
allowed; nothing to do.
return.

Inserting into a BST - the
nonexistent case

insert(t, 5)10

8 16

4 9 11 17

t:

Inserting into a BST - the
nonexistent case

insert(t, 5)10

8 16

4 9 11 17

t:

Inserting into a BST - the
nonexistent case

insert(t, 5)10

8 16

4 9 11 17

t:
5 < 10

Inserting into a BST - the
nonexistent case

insert(t, 5)10

8 16

4 9 11 17

t:
5 < 10
insert(left, 5)

Inserting into a BST - the
nonexistent case

insert(t, 5)10

8 16

4 9 11 17

t:
5 < 10
insert(left, 5)

Inserting into a BST - the
nonexistent case

insert(t, 5)10

8 16

4 9 11 17

t:
5 < 10
insert(left, 5)

5 < 8

Inserting into a BST - the
nonexistent case

insert(t, 5)10

8 16

4 9 11 17

t:
5 < 10
insert(left, 5)

5 < 8
insert(left, 5)

Inserting into a BST - the
nonexistent case

insert(t, 5)10

8 16

4 9 11 17

t:
5 < 10
insert(left, 5)

5 < 8
insert(left, 5)

Inserting into a BST - the
nonexistent case

insert(t, 5)10

8 16

4 9 11 17

t:
5 < 10
insert(left, 5)

5 < 8
insert(left, 5)

5 > 4

Inserting into a BST - the
nonexistent case

insert(t, 5)10

8 16

4 9 11 17

t:
5 < 10
insert(left, 5)

5 < 8
insert(left, 5)

5 > 4
insert(right, 5)

Inserting into a BST - the
nonexistent case

insert(t, 5)10

8 16

4 9 11 17

t:
5 < 10
insert(left, 5)

5 < 8
insert(left, 5)

5 > 4
insert(right, 5)

null - not found. insert
it here!

Inserting into a BST - the
nonexistent case

insert(t, 5)10

8 16

4 9 11 17

t:
5 < 10
insert(left, 5)

5 < 8
insert(left, 5)

5 > 4
insert(right, 5)

null - not found. insert
it here!

5

Let’s Build Some Trees

t = new BST();
t.insert(10)
t.insert(15)
t.insert(16)
t.insert(8)
t.insert(16)
t.insert(9)
t.insert(11)
t.insert(-1)

t = new BST();
t.insert(-1)
t.insert(8)
t.insert(9)
t.insert(10)
t.insert(11)
t.insert(15)
t.insert(16)
t.insert(16)

Warm-up
Write a method to find the smallest value in a BST:

10

8 16

4 9 11 17

/** Returns min value in BST n.
 * pre: n is not null */
public int minimum(Node n) {

}
10

14

16

15

1. Spec
2. Base case
3. Recursive definition
4. Implement 3 with recursive calls.

Warm-up
Write a method to find the smallest value in a BST:

10

8 16

4 9 11 17

/** Returns min value in BST n.
 * pre: n is not null */
public int minimum(Node n) {
 if (n.left == null)
 return n.value;

}
10

14

16

15

2. Base case

1. Spec

4. Implement using recursive call

3. Recursive definition:

Smallest(n) is:

• the smallest value in the left subtree, or

• n.value if no left subtree exists.

Warm-up
Write a method to find the smallest value in a BST:

10

8 16

4 9 11 17

10

14

16

15

1. Spec

2. Base case

3. Recursive definition:

Smallest(n) is:

• the smallest value in the left subtree, or

• n.value if no left subtree exists.

4. Implement using recursive call

/** Returns min value in BST n.
 * pre: n is not null */
public int minimum(Node n) {
 if (n.left == null)
 return n.value;
 return minimum(n.left);
}

Warm-up
Write a method to find the smallest value in a BST:

10

8 16

4 9 11 17

10

14

16

15

/** Returns min value in BST n.
 * pre: n is not null */
public int minimum(Node n) {
 if (n.left == null)
 return n.value;
 return minimum(n.left);
}

10

8 16

9 11 17

Deleting a node from a BST

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

10

8 16

9 11 17

if (n is a leaf)
 replace parent’s child with null

Deleting a node from a BST:
Case 1

Three possible cases:

1. n has no children (is a leaf)
2. n has one child

3. n has two children

10

8 16

9 11 17

if (n is a leaf)
 replace parent’s child with null

x

Deleting a node from a BST:
Case 1

Three possible cases:

1. n has no children (is a leaf)
2. n has one child

3. n has two children

10

8 16

9 17

if (n is a leaf)
 replace parent’s child with null

Deleting a node from a BST:
Case 1

Three possible cases:

1. n has no children (is a leaf)
2. n has one child

3. n has two children

10

8 16

9 11 17

Deleting a node from a BST:
Case 2

Three possible cases:

1. n has no children (is a leaf)

2. n has one child
3. n has two children

10

8 16

9 11 17
if (n has exactly one child)

Deleting a node from a BST:
Case 2

Three possible cases:

1. n has no children (is a leaf)

2. n has one child
3. n has two children

10

8 16

9 11 17
if (n has exactly one child)
 replace parent’s child with n’s child

Deleting a node from a BST:
Case 2

Three possible cases:

1. n has no children (is a leaf)

2. n has one child
3. n has two children

x

10

8 16

9 11 17
if (n has exactly one child)
 replace parent’s child with n’s child
 replace n’s child’s parent with n’s parent

Deleting a node from a BST:
Case 2

Three possible cases:

1. n has no children (is a leaf)

2. n has one child
3. n has two children

x

x

10

16

9 11 17

Deleting a node from a BST:
Case 2

Three possible cases:

1. n has no children (is a leaf)

2. n has one child
3. n has two children

if (n has exactly one child)
 replace parent’s child with n’s child
 replace n’s child’s parent to n’s parent

Deleting a node from a BST:
Case 2

10

169

11 17

Three possible cases:

1. n has no children (is a leaf)

2. n has one child
3. n has two children

if (n has exactly one child)
 replace parent’s child with n’s child
 replace n’s child’s parent to n’s parent

if (n has two children)

Deleting a node from a BST: 
Case 3

10

8 16

9 11 17

12

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

if (n has two children)
 let k = min node in right subtree

Deleting a node from a BST: 
Case 3

10

8 16

9 11 17

12

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value

Deleting a node from a BST: 
Case 3

10

8 16

9 11 17

12

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value

Deleting a node from a BST: 
Case 3

11

8 16

9 11 17

12

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value

Deleting a node from a BST: 
Case 3

11

8 16

9 11 17

12

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

Can we do that?

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value

Deleting a node from a BST: 
Case 3

11

8 16

9 11 17

12

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

Can we do that?
• k is n’s successor (next in an in-order traversal)

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value

Deleting a node from a BST: 
Case 3

11

8 16

9 11 17

12

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

Can we do that?
• k is n’s successor (next in an in-order traversal)
• Everything else in n’s right subtree is bigger than it

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value

Deleting a node from a BST: 
Case 3

11

8 16

9 11 17

12

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

Can we do that?
• k is n’s successor (next in an in-order traversal)
• Everything else in n’s right subtree is bigger than it
• Everything in n’s left subtree is smaller than it

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value

Deleting a node from a BST: 
Case 3

11

8 16

9 11 17

12

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

Can we do that?
• k is n’s successor (next in an in-order traversal)
• Everything else in n’s right subtree is bigger than it
• Everything in n’s left subtree is smaller than it
• k’s value can safely replace n’s…but now we have a duplicate.

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree

11

8 16

9 17

12

Deleting a node from a BST: 
Case 3

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

11

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree

11

8 16

9 17

12

Deleting a node from a BST: 
Case 3

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree (recursively!)

11

8 16

9 12 17

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

Deleting a node from a BST: 
Case 3

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree

11

8 16

9 12 17

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

Deleting a node from a BST: 
Case 3

this has to be either Case 1 or Case 2!

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree

11

8 16

9 12 17

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

Deleting a node from a BST: 
Case 3

this has to be either Case 1 or Case 2!
Why?

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree

11

8 16

9 12 17

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

Deleting a node from a BST: 
Case 3

this has to be either Case 1 or Case 2!
Why? Rewind to before we removed it:

11

12

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree

11

8 16

9 12 17

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

Deleting a node from a BST: 
Case 3

this has to be either Case 1 or Case 2!
Why? Rewind to before we removed it:

11

12

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree

11

8 16

9 12 17

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

Deleting a node from a BST: 
Case 3

this has to be either Case 1 or Case 2!
Why? Rewind to before we removed it:

11

12

• k is the smallest node in n’s right subtree.

if (n has two children)
 let k = min node in right subtree
 replace n’s value with k’s value
 remove k from n’s right subtree

11

8 16

9 12 17

Three possible cases:

1. n has no children (is a leaf)

2. n has one child

3. n has two children

Deleting a node from a BST: 
Case 3

this has to be either Case 1 or Case 2!
Why? Rewind to before we removed it:

11

12

• k is the smallest node in n’s right subtree.
• if it had a left child, that child would have to be smaller!

Details
• Need to update root pointer if root is removed.

• Can’t assume n.parent isn’t null - n may be
root

• To update parent’s child pointer, you need to
know which (L or R) child pointer to update.

• The approach presented differs from that in
CLRS and some other resources.

Practice

10

8 16

4 9 11 17

t:
remove(9)
remove(4)
remove(10)

Do the following operations
in sequence:

Practice

10

8 16

4 9 11 17

t:

5

remove(9)
remove(4)
remove(10)

Do the following operations
in sequence:

BST Remove

30 second kitten break

The Set ADT

 boolean contains(Object ob);
 boolean add(Object ob);
 boolean remove(Object ob);

/** A collection that contains no duplicates. */
Supports these operations:

Set ADT
/** A collection that contains no duplicate
 * elements. */
interface Set {
 /** Return true if the set contains ob */
 boolean contains(Object ob);

 /** Add ob to the set; return true iff
 * the collection is changed. */
 boolean add(Object ob);

 /** Remove ob from the set; return true iff
 * the collection is changed. */
 boolean remove(Object ob);
 ...
}

The Set ADT

 boolean contains(Object ob);
 boolean add(Object ob);
 boolean remove(Object ob);

/** A collection that contains no duplicates. */
Supports these operations:

Possible concrete implementations?

The Set ADT

 boolean contains(Object ob);
 boolean add(Object ob);
 boolean remove(Object ob);

/** A collection that contains no duplicates. */
Supports these operations:

Runtimes of possible concrete implementations?

contains add remove
array (unsorted)

array (sorted)
linked list (unsorted)

linked list (sorted)
binary search tree

Example: (unsorted) ArraySet<T>
class ArraySet<T> implements Set<T> {
 T[] a;
 int size;
 /** Return true iff the collection contains x */
 boolean contains(T x) {
 for (int i = 0; i < size; i++) {
 if a[i].equals(x)
 return true;
 }
 return false;
 }
 /** Add x to the collection; return true iff
 * the collection is changed. */
 boolean add(T x) {
 if (!contains(x)) {
 a[size] = x; // let’s hope a is big enough...
 size++;
 return true;
 }
 return false;
 }

