CSCI 241

Lecture 11 | rm——
. please get logged into
Binary Search Trees Socrative now!

socrative.com
room name: CSCIl241

Announcements

Goals

e Know how to perform (and code) three tree traversals: pre-
order, in-order, and post-order.

e Know the definition and uses of a binary search tree.

* Be prepared to implement, and know the runtime of, the
following BST operations:

* searching
e inserting
* deleting

 Know what a balanced BST is and why we want it.

Tree Terminology

M is the root of this tree

N is the left child of P

S is the right child of P

P is the parent of N

G is the root of the left subtree of M
B, H, J, N, S are leaves

M and G are ancestors of D

P, N, S are descendants of W

J is at depth 2

The subtree rooted at W has height 2
A collection of several trees is called a forest.

Tree Terminology:
Lighting Round!

ABCD (name the node!):

P

A B

-

F

Tree Terminology:
Lighting Round!

ABCD (name the node!):

What’s the root of G’s right subtree?

~
\

A

Tree Terminology:
Lighting Round!

ABCD (name the node!):

What’s the root of G’s right subtree?

~
\

What’s an ancestor of F? A

Tree Terminology:
Lighting Round!

ABCD (name the node!):

What’s the root of G’s right subtree?

What’s an ancestor of F?

What’s C’s parent? C

/ \

Tree Terminology:
Lighting Round!

ABCD (name the node!):

What’s the root of G’s right subtree?

What’s an ancestor of F?

What’s C’s parent? C D

What’s a node at depth 17?

v Tree Terminology:
O Lighting Round!

ABCD (name the node!):

What’s the root of G’s right subtree?

G

e

What'’s an ancestor of F? /; A \)

What'’s C’s parent?

@)
O
m

What’s a node at depth 17?

What’s a node at the root of a @

subtree of height 07

Tree Terminology:
Lighting Round!

ABCD:
What’s the height of the tree rooted

at G? /

A B

-

G

F

Tree Terminology:
Lighting Round!

ABCD: / B \
What’s the height of the tree rooted /G
at G? / \

1
A. 1 A ®

B. 2 / z\ /\)
S))
H /
~— _

//

Tree Terminology:
Lighting Round!

ABCD:
What’s the depth of node D?

G

e

A B

-

F

Tree Terminology:

Lighting Round!

ABCD:

G

What'’s the depth of node D? '/

A (
A

B

N\

Tree Traversals

Print (or otherwise process) every node in a tree:

e A binary tree is
e Empty, or
e Three things:
e value
e a left binary tree

* aright binary tree

Tree Traversals

Print (or otherwise process) every node in a tree:

e A binary tree is Print all nodes in a binary tree:

boolean printTree (Tree t):

e Empty, or (base case - nothing to print)
if t == null:

i:> return

* Three things:

e value = (print this node’s value)
System.out.println(t.value)

* aleft binary tree >(reoursive call - print left subtree)
printTree (t.left)

* aright binary tree recursive call - print left subtree)

printTree (t.right)

Tree Traversals

Print (or otherwise process) every node in a tree:

boolean printTree (Tree t):

D @ (base case - nothing to print)
if t == null:
@ return

(print this node’s value)
System.out.println(t.value)

T\,ﬁ)\ Print all nodes in a binary tree:

(recursive call - print left subtree)
printTree (t.left)

(recursive call - print left subtree)
printTree (t.right)

Practice Exercise

* Write the values printed by a:

e pre-order /@)\

in-order a @
o 4

e post-order

traversal of this (or any other) binary tree.

Tree Traversals

“Walking” over the whole tree is called a tree traversal
This is done often enough that there are standard names.
Previous example was a pre-order traversal.

1. Process root
2. Process left subtree
3. Process right subtree

Other common traversals:

in-order traversal. post-order traversal:
1. Process left subtree «— 1. Process left subtree

2. Process root=——— 2. Process right subtree

3. Process right subtree=

3. Process root «—

Tree Traversals

Print (or otherwise process) every node in a tree:

T—, L Print all nodes in a binary tree:
@ boolean preorder (Tree t):

@ @ (base case - nothing to print)

gg 7\ if t == null:
turn
) ® -

ABCD: _T IS a reference tc_) thg (print this node’s value)
node with value 5. What is printed System.out.println(t.value)

?
by ’i‘e geﬂl;; e80r der (T) : (recursive call - print left subtree)
B. 485 o @ printTree (t.left)

C. 78425 (recursive call - print left subtree)
@5 47892 printTree (t.right)

Binary Tree

public class Tree {
int value;
Tree parent;
Tree left;
Tree right;

Binary Search Tree

/** BST: a binary tree, in which:
* —all values in left are < value
* —all values in right are > value
* -left and right are BSTs */
public class BST {
int “value;
BST parent ;< —
BST left; < Valuo

BST right; > valwi

Binary Search Tree

/** BST: a binary tree, in which:
* —all values in left are < value
* —all values in right are > value
* -left and right are BSTs */
public class BST {
int value;
BST parent;
BST left;
BST right;

Binary Search Tree

/** BST: a binary tree, in which:
* —all values in left are(<)value
* —all values 1]

-left and right

public class BST {

int value;
BST parent;
BST left: conseqguence: no duplicates!

BST right;

Binary Search Tree

S

TaaoE

<
tz,

1

ABCD: Which of these is not a binary search tree?

A: |10
8 16
A
C: |10
8 16
/ \

4 14| |17 12| |2903

Traversing a BST

pre-order traversal:
1. Process root
2. Process left subtree
3. Process right subtree

in-order traversal:
1. Process left subtree
2. Process root

3. Process right subtree

post-order traversal.

1. Process left subtree
2. Process right subtree
3. Process root

Write the values printed by an in-order traversal of each of the

0 1 292 following BSTs: %910 1 2

10
10 10

14
15 8 16

14
/\ lo 1y)5 1L 29 |16 /\
12| |293 4 9 11 17

20

(not Search!)

Searching a Binary Tree

. : not BST!
* A binary tree is Find vin a b(lnary tree):

 Empty, or (base case - not found!)

* Three things:

e value (base case - is this v7?)
e aleft binary tree (recursive call - is v in left?)

* aright binary tree (recursive call - is v in right?)

(not Search!)

Searching a Binary Tree

. : not BST!
* A binary tree is Find vin a b(lnary tree):

boolean findVal (Tree t, int v):
N

 Empty, or (base case - not found!)
if t == null:

. t fal
 Three things: / \\ reruEn tatse
e value (base case - is this v?)
1f t lue == v: return true
/\

e aleft binary tree (recursive call - is v in left?)
_ return findval (t.left)

i i | | £indval (t.right)
e aright binary tree (recursive call - is v in right?)

Searching a BST

ﬁo\ search(t, 11)

8

t:
pd
\

Searching a BST

t: search(t, 11)

8

NN

17

Searching a BST

t: search(t, 11)
11> 10

8

NN

17

Searching a BST

t:

8

NN

17

search(t, 11)
11> 10

search(right, 11)

Searching a BST

A

17

search(t, 11)
11> 10

search(right, 11)

Searching a BST

R

11

17

search(t, 11)

11> 10

search(right, 11)

Searching a BST

t: |10 search(t, 11)

11> 10
search(right, 11)
11 <16

11 17

Searching a BST

11

17

search(t, 11)
11 >10

search(right, 11)
11 <16

search(left, 11)

Searching a BST

11

search(t, 11)
11 >10

search(right, 11)
11 <16

search(left, 11)

Searching a BST

16

);

search(t, 11)
11 >10

search(right, 11)
11 <16

search(left, 11)

Searching a BST

16

);

search(t, 11)
11 >10

search(right, 11)
11 <16

search(left, 11)
11 == 11

Searching a BST

16

);

search(t, 11)
11> 10

search(right, 11)
11 <16

search(left, 11)
11 == 11

found it! return.

Searching a BST - the
nonexistent case

search(t, 5)

10

8

t:
pd
\

Searching a BST - the
nonexistent case

t: search(t, 5)

8

NN

17

Searching a BST - the
nonexistent case

t: search(t, 5)
5<10

8

NN

17

Searching a BST - the
nonexistent case

t:

8

NN

17

search(t, 5)
5<10

search(left, 5)

Searching a BST - the
nonexistent case

t: search(t, 5)
5<10

8 search(left, 5)

\

Searching a BST - the
nonexistent case

t:

10

ot

search(t, 5)
5<10

search(left, 5)

Searching a BST - the
nonexistent case

t:

10

ot

search(t, 5)
5<10

search(left, 5)

5«8

Searching a BST - the
nonexistent case

t:

10

ot

search(t, 5)
5<10

search(left, 5)

5«8

search(left, 5)

Searching a BST - the
nonexistent case

t:

10

o

search(t, 5)
5<10

search(left, 5)

5«8

search(left, 5)

Searching a BST - the
nonexistent case

t:

10

pd

search(t, 5)
5<10

search(left, 5)

5«8

search(left, 5)

Searching a BST - the
nonexistent case

£: 10 search(t, 5)
/ N 5<10
8 search(left, 5)
59<8

search(left, 5)
5>4

Searching a BST - the
nonexistent case

£: 10 search(t, 5)
/ N 5<10
8 search(left, 5)
59<8

search(left, 5)
5>4

search(right, 5)

Searching a BST - the
nonexistent case

t:

10

pd

search(t, 5)
5<10

search(left, 5)
5<8

search(left, 5)
5>4

search(right, 5)

null - not found!

Searching: BT vs BST

/** Searches the binary tree

* rooted at n for value v,
* returning true iff it is
* in the tree. */

boolean srchBT(n, v) {

if (n == null) {
return false;

}

if (n.v == v) {

return true;
1

/** Searches the binary *search*
* tree rooted at n for value v,
* returning true iff it is in

* the tree. */

public srchBST(n, v) {

if

}

if

1

(n == null) {
return false;

(n.v == v) {
return true;

J

return srchBT(n.left, v)
| | srchBT(n.right, v);

<~

if (v < n.v) {

}
}

return ‘srchBST(n.left;v);
else {
return ¢srchBST(n.right, v);

Searching a@

What’s the runtime?

boolean search(@l:>t, int v):
if t == null:

return false Ci>
if t.value == v: C7

return true
if v < t.value:
— return search(t.left)

~\1\0

8

N

else: 4

—i)return search(t.right)

WA

17

\
)

Searching a BST:
What'’s the runtime?

boolean search(BST t, int v):

if t == null: 10
return false)

if t.value == v: ////
return true 8 16

if v < t.value: \\‘ ‘// \\\
return search(t.left)

else: 4 9 11 17

return search(t.right)
If h is the tree’s height, search can visit at most h+1 nodes!

Runtime of search is O(h).

Searching a BST:
What'’s the runtime?

boolean search(BST t, int v):

if t == null: 10
return false)

if t.value == v: ////
return true 8 16

if v < t.value: \\‘ ‘// \\\
return search(t.left)

else: 4 9 11 17

return search(t.right)
If h is the tree’s height, search can visit at most h+1 nodes!

Runtime of search is O(h).

That’s great, but how does h relate to n, the number of nodes?

How many nodes does a
tree with height h have?

Consider h = 2: depth Complete

0 binary tree

How many nodes does a
tree with height h have?

Consider h = 2: depth Complete

0 binary tree

4N

Fewest possible:
n = h+1
nis O(h)

How many nodes does a
tree with height h have?

Consider h = 2: depth Complete

0 binary tree

4N

Fewest possible:
n = h+1
nis O(h)
h is O(n)

How many nodes does a
tree with height h have?

Consider h = 2: depth Complete

@\ _______ binary tree

Fewest possible: Most pOSSIb|e.
n = h+1 At depth d: 29 nodes possible.
nis O(h) At all depths: 20+ 21+ ... + 2N

h is O(n) =2m1 -1

How many nodes does a
tree with height h have?

Consider h = 2: depth Complete

@\ _______ binary tree

Fewest possible: Most pOSSIb|e.
n = h+1 At depth d: 29 nodes possible.
nis O(h) At all depths: 20+ 21+ ... + 2N
h is O(n) =21 -1

n = 2h+ - 1

How many nodes does a
tree with height h have?

Consider h = 2: depth Complete

@\ _______ binary tree

Fewest possible: Most pOSSIb|e.
n = h+1 At depth d: 29 nodes possible.
nis O(h) At all depths: 20+ 21+ ... + 2N
his O = 2h+1 _ 1
is O(n) n = 2h+1 - 4

nis O(2h)

How many nodes does a
tree with height h have?

Consider h = 2: depth Complete

@\ _______ binary tree

Fewest possible: Most pOSSIb|e.
n = h+1 At depth d: 29 nodes possible.
nis O(h) At all depths: 20+ 21+ ... + 2N
his O = 2h+1 _ 1
is O(n) n = 2h+1 - 4

nis O(2h) h is O(log n)

Searching a BST:

What’s the runtime?

boolean search(BST t, int v):

if t == null:
return false 10

if t.value == v:

14

return true
if t.value < v:

return search(t.left)
else:

return search(t.right)

Runtime of search is O(h).

15

16

20

Worst: O(n)

\

Best: O(log n)

10

11/-| 6\

17

Searching a BST:

What’s the runtime?

We want our trees to

boolean search(BST t, int v):

if t == null:
return false 10

if t.value == v:

14

return true
if t.value < v:

return search(t.left)
else:

return search(t.right)

Runtime of search is O(h).

15

look more like this

16

20

Worst: O(n)

\

Best: O(log n)

10

11/-| 6\

17

