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Lecture X: 10
Abstract Data Types

Introduction to Trees



Announcements

e Submitting late (using slip days or otherwise)
requires sending me email after you submit.

 Videos of Quicksort and Radix Sort runtime
analysis will be posted soon after class.

e Today: onward to trees!
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Goals:

* Know the difference between an abstract data type and its
implementation.

e Understand the motivation for trees:
¢ To model tree-structured data.

* To implement abstract data types.
¢ Understand the definition of a tree.

* Know the basic terminology associated with trees:

* Root, child, parent, leaf, height, depth, subtree, descendent, ancestor

* Be able to write a tree class and simple recursive methods such as size,
height, and traversals (lab 4).



Last Week:
Big-Deal CS Concept #1: Runtime



Big-Deal CS Concept #2:
Interface vs Implementation
and Abstract Data Types

An abstract data type specifies only interface,
not implementation



Big-Deal CS Concept #2:
Interface vs Implementation
and Abstract Data Types

What the operations do

A

An abstract data type specifies only interface,
not implementation



Big-Deal CS Concept #2:
Interface vs Implementation
and Abstract Data Types

What the operations do

A

An abstract data type specifies only interface,
not implementation

\ 4

How they are accomplished
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Abstract Data Types:
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(interface) Cabinet PW\Q,
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FilingCabinet PilingCabinet
(Implementation 1) (Implementation 2)



Interface vs Implementation:
Example

Cabinet: /(short for “if and only if”)

e Contains(item) - returns true iff item is in the cabinet
* Add(item) - adds item to the cabinet
* Remove(item) - removes item from the cabinet if it exists

Interface

FilingCabinet implements Cabinet:
Contains(item):
,7>look up drawer by first letter range
—>find folder by first letter
Lsearch folder for item
5

return true if item is found, false otherwise

Implementation



Comparing Implementations

class FilingCabinet:
e Contains(item):
look up drawer by first letter range
find folder by first letter
search folder for item
return true if item is found, false otherwise
class PilingCabinet:
e Contains(item):
for each drawer:
exhaustively search drawer
if found, return true

return false



Comparing Implementations

class FilingCabinet:
e Add(item):
look up drawer by first letter range
find folder by first letter
insert item into folder
class PilingCabinet:
e Add(item):
open random drawer

insert item into drawer






Collection Interface

<<interface>>

Collection

I

<<interface>> <<interface>> <<interface>>
Q .,
Set List | Queue
- o" .0 ....... '.‘ ..

.
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<<interface>> : ] g i
SortedSet ArrayList Vector LinkedList PriorityQueue
LinkedHashSet S hieiae .
Navigable S et | > implements

: —, extends



Is an array an ADT?
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ADTs and Runtime:
Why we care

Runtime comparison of List implementations:

ArrayList LinkedList
array chained nodes
O(n) O(n)

b

— LIRSS b
o) o
—= SaE— > o
O(1) O(1)
o(1) o(1)

Assume: i = arbitrary index n = array's length



Linked List

public class ListNode {
int value;
ListNode next;



Linked List

public class List {
int value;
List next;

}



Linked List

public class List {
int value;
List next;

}

The node is the list.
Next points to the tail of the list (also a list!)



Binary Tree

public class Tree ({
int value;
Tree left;
Tree right;

}



Binary Tree

public class Tree ({
int value;
Tree left;
Tree right;

}

The node is the tree
left points to theleft child.of the tree (also a treel)

_ -
right points to the right child of the tree (also a tree!)

(



Tree - Definition

Tree: like a linked list, but:

* Each node may have Zero or more
SuCCcessors (chlldren)

* Each node has exactly one

predecessor (parent) except the
root, which has none

e All nodes are reachable from root
Binary tree: A tree, but:
* Each node can have at most two q{
children (left child, right child)
(\

Not a tree Llst like tree

General tree Binary tree




Tree Terminology

M is the root of this tree

N is the left child of P @
S is the right child of P

P is the parent of N e m



Subtree
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Height of a tree
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Tree Terminology

M is the root of this tree

N is the left child of P

S is the right child of P

P is the parent of N

G is the root of the left subtree of M
B, H, J, N, S are leaves

M and G are ancestors of D

P, N, S are descendants of W

J is at depth 2

The subtree rooted at W has height 2
A collection of several trees is called a forest 2




public class BinaryTreeNode {
private int value;
private BinaryTreeNod(nU// if no left child)
private BinaryTreeNode left; // left subtree
private BinaryTreeNode right; // right subtree

"~ (null if no right child)

public class GeneralTreeNode {
private int value;
private GeneralTreeNode parent;
private List<GeneralTreeNode> children;

}
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Why do we need these?

to represent hie al structure.
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Why do we need these?

to represent hierarchical structure.

BVDS > Annotations 4 Dataterm > easy_output.txt

DAVIS > Annotations_old > Evaluation >

FBMS > ImageSets » = README.md 7 grid.py

SegTrackv2 4 JPEGImages > Segmentations > homography |

timelapse » = README.md model.model

Results > my_results |

output.txt
paper |
test |
train.txt

train.txt.model
train.txt.range
train.txt.scale
train.txt.scale.out
train.txt.scale.png



Why do we need these?

to represent hierarchical structure.

Syntax Trees:

* |n textual representation,
parentheses show
hierarchical structure

* |In tree representation,
hierarchy is explicit in the
tree’s structure

Also used for natural languages and programming languages!
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to implement various ADTs efficiently.

Tree§gt, TreeMap
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Why do we need these?

to implement various ADTs efficiently.

TreeSet, TreeMap

Height of a balanced binary tree is
. 1

Consequence: Many operations (find, insert, ...) can be
done in O(log n) in carefully-designed trees.

oy
o od



Thinking about trees recursively

public class BinaryTreeNode {

private int value;

private BinaryTreeNode parent;
private BinaryTreeNode left;
private BinaryTreeNode right;

e A binary tree |

e Empty, or
e Three things:

e value

—_

* a left binary tree

* aright binary tree
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public class BinaryTreeNode {
private int value;
private BinaryTreeNode parent;
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}

e Empty, or

<
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Thinking about trees recursively

public class BinaryTreeNode {
private int value;
private BinaryTreeNode parent;

= . private BinaryTreeNode left;
. A blnary tree IS private BinaryTreeNode right;
}

e Empty, or

* Three things: /@\@
e value \@@{ \®

e a left binary tree

¢
* aright binary tree // \7/\




Thinking about trees recursively

public class BinaryTreeNode {
private int value;
private BinaryTreeNode parent;

o A binary tree iS i finaymeenoas signt;
}
e Empty, or

* Three things:

/@\
+ e & e b

* a left binary tree ‘/@\‘
* aright binary tree /A\ /\
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Operations on trees

often follow naturally from the definition of a tree:

* A binary tree is Find v in a binary tree:

boolean findvVal (Tree t, int v):

 Empty, or (base case - not found!)
if t == null:
e Three thingsr return false
e value (base case - is this v?)
e aleft binary tree (recursive call - is v in left?)
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Operations on trees

often follow naturally from the definition of a tree:

* A binary tree is Find v in a binary tree:

boolean findvVal (Tree t, int v):

e Empty, or (base case - not found!)
if t == null:
. t fal
 Three things: reruEn tatse
o base case - is this v?
VahJe £f t.value == v: retuzn true
e aleft binary tree (recursive call - is v in left?)

* aright binary tree (recursive call - is v in right?)



Operations on trees

often follow naturally from the definition of a tree:

e A binary tree is
e Empty, or
* Three things:
e value
e a left binary tree

* aright binary tree

Find v in a binary tree:
boolean findvVal (Tree t, int v):

(base case - not found!)
if t == null:
return false

(base case - is this v?)

if t.value == v: return true

(recursive call - is v in left?)
return findVal (t.left)

| | £indval (t.right)
(recursive call - is v In right?)
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e A binary tree is
e Empty, or
e Three things:
e value
e a left binary tree

* aright binary tree
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boolean printTree (Tree t):

e Empty, or (base case - nothing to print)
if t == null:
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Tree Traversals

Print (or otherwise process) every node in a tree:

e A binary tree is Print all nodes in a binary tree:

boolean printTree (Tree t):

e Empty, or (base case - nothing to print)
if t == null:
e Three things: return
e value (print this node’s value

System.out.println(t.value)

e a left binary tree

* aright binary tree



Tree Traversals

Print (or otherwise process) every node in a tree:

e A binary tree is Print all nodes in a binary tree:

boolean printTree (Tree t):

 Empty, or (base case - nothing to print)
if t == null:
return

* Three things:

e value (print this node’s value)
System.out.println(t.value)

* aleft binary tree ecursive call=pxint left subtree)
printTree (t.left)

* aright binary tree



Tree Traversals

Print (or otherwise process) every node in a tree:

e A binary tree is Print all nodes in a binary tree:

boolean printTree (Tree t):

e Empty, or (base case - nothing to print)
if t == null:
e Three things: return
e value (print this node’s value)

System.out.println(t.value)
* aleft binary tree (recursive call - print left subtree)
printTree (t.left)

* aright binary tree (recursive call - print left subtree)
printTree (t.right)



Tree Traversals

Print (or otherwise process) every node in a tree:

boolean printTree (Tree t):

D @ (base case - nothing to print)
if t == null:
@ return

(print this node’s value)
System.out.println(t.value)

T\,ﬁ)\ Print all nodes in a binary tree:

(recursive call - print left subtree)
printTree (t.left)

(recursive call - print left subtree)
printTree (t.right)



Tree Traversals

Print (or otherwise process) every node in a tree:

T\,ﬁ)\ Print all nodes in a binary tree:

boolean printTree (Tree t):

@ (base case - nothing to print)

gg é if t == null:
turn
@ re

ABCD: _T IS a reference tc_) thg (print this node’s value)
node with value 5. What is printed System.out.println(t.value)

; ?
by the call printTree(T)? (recursive call - print left subtree)

g. ? j g g g printTree (t.left)
C. 78425 (recursive call - print left subtree)

D. 54782 printTree (t.right)



Tree Traversals

“Walking” over the whole tree is called a tree traversal
This is done often enough that there are standard names.
Previous example was a Bre\-order traversal:

1 rOCESS roo

2. Process left subtree

3. Process right subtree
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Tree Traversals

“Walking” over the whole tree is called a tree traversal
This is done often enough that there are standard names.
Previous example was a pre-order traversal.

1. Process root

2. Process left subtree

3. Process right subtree

Other common traversals:

in-order traversal:
1. Process left subtree<—

2. Process root—=——
3. Process right subtree <



Tree Traversals

“Walking” over the whole tree is called a tree traversal
This is done often enough that there are standard names.
Previous example was a pre-order traversal.

1. Process root

2. Process left subtree

3. Process right subtree

Other common traversals:

in-order traversal. post-order traversal:
1. Process left subtree 1. Process left subtree<
2. Process root 2. Process right subtree

3. Process right subtree 3. Process root



Why do we need these?

to represent hierarchical structure.

Quadtrees in graphics and simulation:
https://www.youtube.com/watch?v=fuexOsl Ofl0




Practice Exercise

* Write the values printed by a:

e pre-order /@)\

in-order a @
o 4

e post-order

traversal of this tree.



Terminology - Self-Quiz

root

subtree @

leaf

child e @

parent

ancestor

descendant ° 0 °
depth

height Q ° 0 e



