
CSCI 241
Lecture 8:

Abstract Data Types

Introduction to Trees

Announcements
• Submitting late (using slip days or otherwise)

requires sending me email after you submit.

• Videos of Quicksort and Radix Sort runtime
analysis will be posted soon after class.

• Today: onward to trees!

Goals:
• Know the difference between an abstract data type and its

implementation.

• Understand the motivation for trees:

• To model tree-structured data.

• To implement abstract data types.

• Understand the definition of a tree.

• Know the basic terminology associated with trees:

• Root, child, parent, leaf, height, depth, subtree, descendent, ancestor

• Be able to write a tree class and simple recursive methods such as size,
height, and traversals (lab 4).

Last Week: 
Big-Deal CS Concept #1: Runtime

Big-Deal CS Concept #2:
Interface vs Implementation

and Abstract Data Types

An abstract data type specifies only interface,
not implementation

Big-Deal CS Concept #2:
Interface vs Implementation

and Abstract Data Types

An abstract data type specifies only interface,
not implementation

What the operations do

Big-Deal CS Concept #2:
Interface vs Implementation

and Abstract Data Types

An abstract data type specifies only interface,
not implementation

What the operations do

How they are accomplished

Abstract Data Types:
Examples

Abstract Data Types:
Examples

Abstract Data Types:
Examples

• List, Queue, Stack

Abstract Data Types:
Examples

• List, Queue, Stack

• Set

Abstract Data Types:
Examples

• List, Queue, Stack

• Set

• Tree

Abstract Data Types:
Examples

• List, Queue, Stack

• Set

• Tree

• Priority Queue

Abstract Data Types:
Examples

• List, Queue, Stack

• Set

• Tree

• Priority Queue

• Map

Abstract Data Types:
Examples

• List, Queue, Stack

• Set

• Tree

• Priority Queue

• Map

• Graph

Abstract Data Types:
Examples

(145)

(Weeks 4,5,7)

(Weeks 4-6; A2)

(Week 6; A3)

(Week 7; A3)

(Weeks 8-9; A4)

Abstract Data Types:
Examples

• List, Queue, Stack (145)

(Weeks 4,5,7)

(Weeks 4-6; A2)

(Week 6; A3)

(Week 7; A3)

(Weeks 8-9; A4)

Abstract Data Types:
Examples

• List, Queue, Stack

• Set

(145)

(Weeks 4,5,7)

(Weeks 4-6; A2)

(Week 6; A3)

(Week 7; A3)

(Weeks 8-9; A4)

Abstract Data Types:
Examples

• List, Queue, Stack

• Set

• Tree

(145)

(Weeks 4,5,7)

(Weeks 4-6; A2)

(Week 6; A3)

(Week 7; A3)

(Weeks 8-9; A4)

Abstract Data Types:
Examples

• List, Queue, Stack

• Set

• Tree

• Priority Queue

(145)

(Weeks 4,5,7)

(Weeks 4-6; A2)

(Week 6; A3)

(Week 7; A3)

(Weeks 8-9; A4)

Abstract Data Types:
Examples

• List, Queue, Stack

• Set

• Tree

• Priority Queue

• Map

(145)

(Weeks 4,5,7)

(Weeks 4-6; A2)

(Week 6; A3)

(Week 7; A3)

(Weeks 8-9; A4)

Abstract Data Types:
Examples

• List, Queue, Stack

• Set

• Tree

• Priority Queue

• Map

• Graph

(145)

(Weeks 4,5,7)

(Weeks 4-6; A2)

(Week 6; A3)

(Week 7; A3)

(Weeks 8-9; A4)

Abstract Data Types:
Examples

• List, Queue, Stack

• Set

• Tree

• Priority Queue

• Map

• Graph

(145)

(Weeks 4,5,7)

(Weeks 4-6; A2)

(Week 6; A3)

(Week 7; A3)

(Weeks 8-9; A4)

Interface vs Implementation:
Example

Cabinet(interface)

(Implementation 1)
FilingCabinet PilingCabinet

(Implementation 2)

Interface vs Implementation:
Example

Cabinet:

• Contains(item) - returns true iff item is in the cabinet

• Add(item) - adds item to the cabinet

• Remove(item) - removes item from the cabinet if it exists

FilingCabinet implements Cabinet:

Contains(item):

look up drawer by first letter range
find folder by first letter
search folder for item
return true if item is found, false otherwise

In
te

rfa
ce

Im
pl

em
en

ta
tio

n

(short for “if and only if”)

Comparing Implementations
class FilingCabinet:

• Contains(item):

look up drawer by first letter range
find folder by first letter
search folder for item
return true if item is found, false otherwise

class PilingCabinet:

• Contains(item):

for each drawer:
exhaustively search drawer
if found, return true

return false

Comparing Implementations

class FilingCabinet:

• Add(item):

look up drawer by first letter range
find folder by first letter
insert item into folder

class PilingCabinet:

• Add(item):

open random drawer
insert item into drawer

Is an array an ADT?

ADTs and Runtime:
Why we care

Class: ArrayList LinkedList
Backing storage: array chained nodes

addAt(i, val) O(n) O(n)
addFirst(val) O(n) O(1)
addLast(val) O(1) O(1)

get(i) O(1) O(n)
getFirst() O(1) O(1)
getLast() O(1) O(1)

Runtime comparison of List implementations:

Assume: i = arbitrary index n = array's length

Linked List
public class ListNode {
 int value;
 ListNode next;
}

Linked List
public class List {
 int value;
 List next;
}

Linked List
public class List {
 int value;
 List next;
}

The node is the list.

Next points to the tail of the list (also a list!)

Binary Tree
public class Tree {
 int value;
 Tree left;
 Tree right;
}

Binary Tree
public class Tree {
 int value;
 Tree left;
 Tree right;
}

The node is the tree.

left points to the left child of the tree (also a tree!)

right points to the right child of the tree (also a tree!)

5

4

7 8 9

2

General tree

5

4

7 8

2

Binary tree

5

4

7 8

Not a tree

5

6

8
List-like tree

Tree - Definition
Tree: like a linked list, but:

• Each node may have zero or more

successors (children)

• Each node has exactly one
predecessor (parent) except the
root, which has none

• All nodes are reachable from root

Binary tree: A tree, but:

• Each node can have at most two

children (left child, right child)

Tree Terminology
M is the root of this tree

N is the left child of P

S is the right child of P

P is the parent of N

M

G W

PJD

NHB S

Subtree
M

G W

PJD

NHB S

Leaf
M

G W

PJD

NHB S

Ancestor, Descendent
M

G W

PJD

NHB S

Height of a tree
M

G W

PJD

NHB S

Depth of a node
M

G W

PJD

NHB S

Tree Terminology
M is the root of this tree

N is the left child of P

S is the right child of P

P is the parent of N

G is the root of the left subtree of M
B, H, J, N, S are leaves

M and G are ancestors of D

P, N, S are descendants of W

J is at depth 2

The subtree rooted at W has height 2

A collection of several trees is called a ________?

M

G W

PJD

NHB S

public class BinaryTreeNode {
 private int value;
 private BinaryTreeNode parent;
 private BinaryTreeNode left; // left subtree
 private BinaryTreeNode right; // right subtree

}

public class GeneralTreeNode {
 private int value;
 private GeneralTreeNode parent;
 private List<GeneralTreeNode> children;
}

(null if no left child)

(null if no right child)

Why do we need these?

Why do we need these?
to represent hierarchical structure.

Why do we need these?
to represent hierarchical structure.

Why do we need these?
to represent hierarchical structure.

Why do we need these?
to represent hierarchical structure.

Why do we need these?
to represent hierarchical structure.

Why do we need these?
to represent hierarchical structure.

Syntax Trees:

• In textual representation,
parentheses show
hierarchical structure

• In tree representation,
hierarchy is explicit in the
tree’s structure

((2+3) + (5+7))

+

2 3 5 7

+

+

Also used for natural languages and programming languages!

Why do we need these?
to implement various ADTs efficiently.

9

8 3 5 7

2

0

Why do we need these?
to implement various ADTs efficiently.

TreeSet, TreeMap

9

8 3 5 7

2

0

Why do we need these?
to implement various ADTs efficiently.

Height of a balanced binary tree is O(log n)

Consequence: Many operations (find, insert, …) can be
done in O(log n) in carefully-designed trees.

TreeSet, TreeMap

9

8 3 5 7

2

0

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

Thinking about trees recursively
public class BinaryTreeNode {
 private int value;
 private BinaryTreeNode parent;
 private BinaryTreeNode left;
 private BinaryTreeNode right;

}

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

Thinking about trees recursively
public class BinaryTreeNode {
 private int value;
 private BinaryTreeNode parent;
 private BinaryTreeNode left;
 private BinaryTreeNode right;

}

Thinking about trees recursively

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

public class BinaryTreeNode {
 private int value;
 private BinaryTreeNode parent;
 private BinaryTreeNode left;
 private BinaryTreeNode right;

}

9

8 3 5 7

2

0

Thinking about trees recursively

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

public class BinaryTreeNode {
 private int value;
 private BinaryTreeNode parent;
 private BinaryTreeNode left;
 private BinaryTreeNode right;

}

9

8 3 5 7

2

0

2

Thinking about trees recursively

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

public class BinaryTreeNode {
 private int value;
 private BinaryTreeNode parent;
 private BinaryTreeNode left;
 private BinaryTreeNode right;

}

9

8 3 5 7

2

0

2

Operations on trees

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

often follow naturally from the definition of a tree:

Operations on trees

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

often follow naturally from the definition of a tree:

Find v in a binary tree:

Operations on trees

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

often follow naturally from the definition of a tree:

(base case - not found!)

Find v in a binary tree:

Operations on trees

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

often follow naturally from the definition of a tree:

(base case - not found!)

(base case - is this v?)

Find v in a binary tree:

Operations on trees

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

often follow naturally from the definition of a tree:

(base case - not found!)

(base case - is this v?)

(recursive call - is v in left?)

Find v in a binary tree:

Operations on trees

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

often follow naturally from the definition of a tree:

(base case - not found!)

(base case - is this v?)

(recursive call - is v in left?)

(recursive call - is v in right?)

Find v in a binary tree:

Operations on trees

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

often follow naturally from the definition of a tree:

(base case - not found!)

(base case - is this v?)

(recursive call - is v in left?)

(recursive call - is v in right?)

Find v in a binary tree:

Operations on trees

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

often follow naturally from the definition of a tree:

(base case - not found!)

(base case - is this v?)

(recursive call - is v in left?)

(recursive call - is v in right?)

Find v in a binary tree:
boolean findVal(Tree t, int v):

Operations on trees

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

often follow naturally from the definition of a tree:

(base case - not found!)

(base case - is this v?)

(recursive call - is v in left?)

(recursive call - is v in right?)

Find v in a binary tree:
boolean findVal(Tree t, int v):

 if t == null:
 return false

Operations on trees

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

often follow naturally from the definition of a tree:

(base case - not found!)

(base case - is this v?)

(recursive call - is v in left?)

(recursive call - is v in right?)

Find v in a binary tree:
boolean findVal(Tree t, int v):

 if t == null:
 return false

 if t.value == v: return true

Operations on trees

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

often follow naturally from the definition of a tree:

(base case - not found!)

(base case - is this v?)

(recursive call - is v in left?)

(recursive call - is v in right?)

Find v in a binary tree:
boolean findVal(Tree t, int v):

 if t == null:
 return false

 if t.value == v: return true

return findVal(t.left)
 || findVal(t.right)

Tree Traversals

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

Print (or otherwise process) every node in a tree:

Tree Traversals

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

Print (or otherwise process) every node in a tree:

Print all nodes in a binary tree:
boolean printTree(Tree t):

Tree Traversals

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

Print (or otherwise process) every node in a tree:

Print all nodes in a binary tree:
boolean printTree(Tree t):

(base case - nothing to print)
 if t == null:
 return

Tree Traversals

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

Print (or otherwise process) every node in a tree:

Print all nodes in a binary tree:
boolean printTree(Tree t):

(base case - nothing to print)
 if t == null:
 return

(print this node’s value)
System.out.println(t.value)

Tree Traversals

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

Print (or otherwise process) every node in a tree:

Print all nodes in a binary tree:
boolean printTree(Tree t):

(base case - nothing to print)
 if t == null:
 return

(print this node’s value)
System.out.println(t.value)

(recursive call - print left subtree)
printTree(t.left)

Tree Traversals

• A binary tree is

• Empty, or

• Three things:

• value

• a left binary tree

• a right binary tree

Print (or otherwise process) every node in a tree:

Print all nodes in a binary tree:
boolean printTree(Tree t):

(base case - nothing to print)
 if t == null:
 return

(print this node’s value)
System.out.println(t.value)

(recursive call - print left subtree)
printTree(t.left)

(recursive call - print left subtree)
printTree(t.right)

Tree Traversals
Print (or otherwise process) every node in a tree:

(base case - nothing to print)

(print this node’s value)

(recursive call - print left subtree)

Print all nodes in a binary tree:
boolean printTree(Tree t):

 if t == null:
 return

System.out.println(t.value)

printTree(t.left)

(recursive call - print left subtree)
printTree(t.right)

5

4

7 8 9

2

General tree

5

4

7 8

2

Binary tree

5

4

7 8

Not a tree

5

6

8
List-like tree

T

Tree Traversals
Print (or otherwise process) every node in a tree:

(base case - nothing to print)

(print this node’s value)

(recursive call - print left subtree)

Print all nodes in a binary tree:
boolean printTree(Tree t):

 if t == null:
 return

System.out.println(t.value)

printTree(t.left)

(recursive call - print left subtree)
printTree(t.right)

5

4

7 8 9

2

General tree

5

4

7 8

2

Binary tree

5

4

7 8

Not a tree

5

6

8
List-like tree

ABCD: T is a reference to the
node with value 5. What is printed
by the call printTree(T)?

A. 5 4 2 7 8

B. 7 4 8 5 2

C. 7 8 4 2 5

D. 5 4 7 8 2

T

Tree Traversals
“Walking” over the whole tree is called a tree traversal

This is done often enough that there are standard names.

Previous example was a pre-order traversal:

1. Process root

2. Process left subtree

3. Process right subtree

Tree Traversals
“Walking” over the whole tree is called a tree traversal

This is done often enough that there are standard names.

Previous example was a pre-order traversal:

1. Process root

2. Process left subtree

3. Process right subtree

Other common traversals:

Tree Traversals
“Walking” over the whole tree is called a tree traversal

This is done often enough that there are standard names.

Previous example was a pre-order traversal:

1. Process root

2. Process left subtree

3. Process right subtree

Other common traversals:

in-order traversal:

1. Process left subtree

2. Process root

3. Process right subtree

Tree Traversals
“Walking” over the whole tree is called a tree traversal

This is done often enough that there are standard names.

Previous example was a pre-order traversal:

1. Process root

2. Process left subtree

3. Process right subtree

Other common traversals:

post-order traversal:

1. Process left subtree

2. Process right subtree

3. Process root

in-order traversal:

1. Process left subtree

2. Process root

3. Process right subtree

Why do we need these?
to represent hierarchical structure.

Quadtrees in graphics and simulation:

https://www.youtube.com/watch?v=fuexOsLOfl0

Practice Exercise
• Write the values printed by a:

• pre-order

• in-order

• post-order

traversal of this tree.

5

4

7 8 9

2

General tree

5

4

7 8

2

Binary tree

5

4

7 8

Not a tree

5

6

8
List-like tree

Terminology - Self-Quiz

M

G W

PJD

NHB S

root

subtree

leaf

child

parent

ancestor

descendant

depth

height

