
CSCI 241
Lecture 8:


Abstract Data Types

Introduction to Trees

 



Announcements
• Submitting late (using slip days or otherwise) 

requires sending me email after you submit.


• Videos of Quicksort and Radix Sort runtime 
analysis will be posted soon after class. 


• Today: onward to trees!



Goals:
• Know the difference between an abstract data type and its 

implementation.


• Understand the motivation for trees:


• To model tree-structured data.


• To implement abstract data types.


• Understand the definition of a tree.


• Know the basic terminology associated with trees:


• Root, child, parent, leaf, height, depth, subtree, descendent, ancestor


• Be able to write a tree class and simple recursive methods such as size, 
height, and traversals (lab 4).



Last Week: 
Big-Deal CS Concept #1: Runtime
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Interface vs Implementation: 
Example

Cabinet:

• Contains(item) - returns true iff item is in the cabinet

• Add(item) - adds item to the cabinet

• Remove(item) - removes item from the cabinet if it exists


FilingCabinet implements Cabinet:

Contains(item):


look up drawer by first letter range 
find folder by first letter 
search folder for item 
return true if item is found, false otherwise

In
te
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(short for “if and only if”)



Comparing Implementations
class FilingCabinet:

• Contains(item):


look up drawer by first letter range 
find folder by first letter 
search folder for item 
return true if item is found, false otherwise 

class PilingCabinet:

• Contains(item):

for each drawer: 
exhaustively search drawer 
if found, return true 

return false



Comparing Implementations

class FilingCabinet:

• Add(item):


look up drawer by first letter range 
find folder by first letter 
insert item into folder 

class PilingCabinet:

• Add(item):


open random drawer 
insert item into drawer







Is an array an ADT?



ADTs and Runtime: 
Why we care

Class: ArrayList LinkedList
Backing storage: array chained nodes

addAt(i, val) O(n) O(n)
addFirst(val) O(n) O(1)
addLast(val) O(1) O(1)

get(i) O(1) O(n)
getFirst() O(1) O(1)
getLast() O(1) O(1)

Runtime comparison of List implementations:

Assume: i = arbitrary index    n = array's length



Linked List
public class ListNode { 
  int value; 
  ListNode next; 
}
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Linked List
public class List { 
  int value; 
  List next; 
}

The node is the list. 

Next points to the tail of the list (also a list!)



Binary Tree
public class Tree { 
  int value; 
  Tree left; 
  Tree right; 
}



Binary Tree
public class Tree { 
  int value; 
  Tree left; 
  Tree right; 
}

The node is the tree.

left points to the left child of the tree (also a tree!)

right points to the right child of the tree (also a tree!) 
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Tree - Definition
Tree: like a linked list, but:

• Each node may have zero or more 

successors (children)


• Each node has exactly one 
predecessor (parent) except the 
root, which has none


• All nodes are reachable from root


Binary tree: A tree, but:

• Each node can have at most two 

children (left child, right child)



Tree Terminology
M is the root of this tree


N is the left child of P

S is the right child of P


P is the parent of N
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Subtree
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Ancestor, Descendent
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Height of a tree
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Tree Terminology
M is the root of this tree


N is the left child of P

S is the right child of P


P is the parent of N

G is the root of the left subtree of M 
B, H, J, N, S are leaves 

M and G are ancestors of D


P, N, S are descendants of W


J is at depth 2


The subtree rooted at W has height 2


A collection of several trees is called a ________?  

M
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public class BinaryTreeNode {
  private int value;
  private BinaryTreeNode parent;
  private BinaryTreeNode left;  // left subtree
  private BinaryTreeNode right; // right subtree

}

public class GeneralTreeNode {
  private int value;
  private GeneralTreeNode parent;
  private List<GeneralTreeNode> children;
}

(null if no left child)

(null if no right child)
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Why do we need these?
to represent hierarchical structure.

Syntax Trees:


• In textual representation, 
parentheses show 
hierarchical structure


• In tree representation, 
hierarchy is explicit in the 
tree’s structure

((2+3) + (5+7))

+

2 3 5 7

+

+

Also used for natural languages and programming languages!
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to implement various ADTs efficiently.
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Why do we need these?
to implement various ADTs efficiently.

TreeSet, TreeMap
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Why do we need these?
to implement various ADTs efficiently.

Height of a balanced binary tree is O(log n)


Consequence: Many operations (find, insert, …) can be 
done in O(log n) in carefully-designed trees.

TreeSet, TreeMap
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• A binary tree is

• Empty, or


• Three things:


• value


• a left binary tree 

• a right binary tree

Thinking about trees recursively
public class BinaryTreeNode {
  private int value;
  private BinaryTreeNode parent;
  private BinaryTreeNode left;
  private BinaryTreeNode right;

}
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• A binary tree is

• Empty, or


• Three things:


• value


• a left binary tree 

• a right binary tree

public class BinaryTreeNode {
  private int value;
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}
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Operations on trees

• A binary tree is

• Empty, or


• Three things:


• value


• a left binary tree 

• a right binary tree

often follow naturally from the definition of a tree:

(base case - not found!)

(base case - is this v?)

(recursive call - is v in left?)

(recursive call - is v in right?)

Find v in a binary tree:
boolean findVal(Tree t, int v):

   if t == null: 
      return false



Operations on trees

• A binary tree is

• Empty, or


• Three things:


• value


• a left binary tree 

• a right binary tree

often follow naturally from the definition of a tree:

(base case - not found!)

(base case - is this v?)

(recursive call - is v in left?)

(recursive call - is v in right?)

Find v in a binary tree:
boolean findVal(Tree t, int v):

   if t == null: 
      return false

   if t.value == v: return true



Operations on trees

• A binary tree is

• Empty, or


• Three things:


• value


• a left binary tree 

• a right binary tree

often follow naturally from the definition of a tree:

(base case - not found!)

(base case - is this v?)

(recursive call - is v in left?)

(recursive call - is v in right?)

Find v in a binary tree:
boolean findVal(Tree t, int v):

   if t == null: 
      return false

   if t.value == v: return true

return findVal(t.left) 
    || findVal(t.right)
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Tree Traversals

• A binary tree is

• Empty, or


• Three things:


• value


• a left binary tree 

• a right binary tree

Print (or otherwise process) every node in a tree:

Print all nodes in a binary tree:
boolean printTree(Tree t):

(base case - nothing to print)
   if t == null: 
      return



Tree Traversals

• A binary tree is

• Empty, or


• Three things:


• value


• a left binary tree 

• a right binary tree

Print (or otherwise process) every node in a tree:

Print all nodes in a binary tree:
boolean printTree(Tree t):

(base case - nothing to print)
   if t == null: 
      return

(print this node’s value)
System.out.println(t.value)
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Print (or otherwise process) every node in a tree:

Print all nodes in a binary tree:
boolean printTree(Tree t):

(base case - nothing to print)
   if t == null: 
      return

(print this node’s value)
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(recursive call - print left subtree)
printTree(t.left)



Tree Traversals

• A binary tree is

• Empty, or


• Three things:


• value


• a left binary tree 

• a right binary tree

Print (or otherwise process) every node in a tree:

Print all nodes in a binary tree:
boolean printTree(Tree t):

(base case - nothing to print)
   if t == null: 
      return

(print this node’s value)
System.out.println(t.value)

(recursive call - print left subtree)
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Tree Traversals
Print (or otherwise process) every node in a tree:

(base case - nothing to print)

(print this node’s value)

(recursive call - print left subtree)

Print all nodes in a binary tree:
boolean printTree(Tree t):

   if t == null: 
      return

System.out.println(t.value)

printTree(t.left)

(recursive call - print left subtree)
printTree(t.right)

5

4

7 8 9

2

General tree

5

4

7 8

2

Binary tree

5

4

7 8

Not a tree

5

6

8
List-like tree

T



Tree Traversals
Print (or otherwise process) every node in a tree:

(base case - nothing to print)

(print this node’s value)

(recursive call - print left subtree)

Print all nodes in a binary tree:
boolean printTree(Tree t):

   if t == null: 
      return

System.out.println(t.value)

printTree(t.left)

(recursive call - print left subtree)
printTree(t.right)
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ABCD: T is a reference to the 
node with value 5. What is printed 
by the call printTree(T)?


A. 5 4 2 7 8

B. 7 4 8 5 2

C. 7 8 4 2 5

D. 5 4 7 8 2


T
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“Walking” over the whole tree is called a tree traversal

This is done often enough that there are standard names.

Previous example was a pre-order traversal:


1. Process root

2. Process left subtree

3. Process right subtree
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Tree Traversals
“Walking” over the whole tree is called a tree traversal

This is done often enough that there are standard names.

Previous example was a pre-order traversal:


1. Process root

2. Process left subtree

3. Process right subtree

Other common traversals:

post-order traversal:

1. Process left subtree

2. Process right subtree

3. Process root

in-order traversal:

1. Process left subtree

2. Process root

3. Process right subtree



Why do we need these?
to represent hierarchical structure.

Quadtrees in graphics and simulation:

https://www.youtube.com/watch?v=fuexOsLOfl0



Practice Exercise
• Write the values printed by a:


• pre-order


• in-order


• post-order


traversal of this tree.

5

4

7 8 9

2

General tree

5

4

7 8

2

Binary tree

5

4

7 8

Not a tree

5

6

8
List-like tree



Terminology - Self-Quiz

M

G W

PJD

NHB S

root

subtree


leaf

child

parent


ancestor


descendant


depth


height



