
CSCI 241
Lecture 9

Runtime of Quick, Merge, and Radix

How's A1 going?

Announcements
• Feedback survey out, please submit by Monday

• Quiz today: same as usual

• In-class problems for today are posted on the
course webpage (schedule table, 4/24): 
https://facultyweb.cs.wwu.edu/~wehrwes/courses/csci241_20s/lectures/L09/sort_runtimes.html

• Please pull them up so you can refer to them while in
breakout rooms.

Goals

• Get more practice analyzing runtimes.

• Know how logarithms end up in runtime
counts.

• Know the runtime complexity of all the
sorting algorithms we’ve covered.

Asymptotic Runtime Class

• Tells us how the runtime grows as the input size grows.

• Doesn't tell us anything about runtime when the input is
small!

or, "big-O" runtime

1. Count the number of primitive (constant-time)
operations that occur over the entire execution of
the algorithm.

2. Drop constants and lower-order terms to find the
asymptotic runtime class.

0. Warmup:  
What's the runtime of mins?

/** Return the max value in A[start..end] */
public int findMax(int[] a, int start, int end) {
 int currentMax = a[start];
 for (int i = start+1; i < end; i++) {
 if (currentMax < a[i]) {
 currentMax = a[i];
 }
 }
 return currentMax;
}

/** Print the min of several subarrays of A
 * Precondition: A.length >= 50. */
public static void mins(A) {
 for (int i = 1; i < 50; i++) {
 System.out.println(findMin(A, 0, i));
 }
}

2. Something new...
public int f(int n) {
 while (n > 0) {
 System.out.println(n);
 n = n/2;
 }
}

Recursive methods:

1. How much work is actually done per call?  
 not counting the recursive calls

2. How many calls are made?

• This is simpler when the work per call is the same.

• Sometimes the work per call depends on n.

Runtime Analysis:
MergeSort

/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
 if (end-start < 2):
 return
 mid = (end+start)/2

 mergeSort(A,start,mid)
 mergeSort(A,mid, end)

 merge(A, start, mid, end)

1. How much work is actually done per call?

2. Runtime of merge
initialize i, j
B = deep copy of A
while neither uncopied segment is empty:
 copy the smaller of B[i], B[j]
 into A[k]
 increment i or j
 increment k
while one uncopied segment is empty:
 copy the next element in the nonempty
 segment into A[k]
 increment i or j
 increment k

2. Runtime of merge
initialize i, j
B = deep copy of A
while neither uncopied segment is empty:
 copy the smaller of B[i], B[j]
 into A[k]
 increment i or j
 increment k
while one uncopied segment is empty:
 copy the next element in the nonempty
 segment into A[k]
 increment i or j
 increment k

B copied

A merged

not yet
copied

i
copied not yet

copied

j

k
?

Invariant

Runtime Analysis:
MergeSort

O(1)
O(1)

O(n)

O(?)
O(?)

1. How much work is actually done per call?

/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
 if (end-start < 2):
 return
 mid = (end+start)/2

 mergeSort(A,start,mid)
 mergeSort(A,mid, end)

 merge(A, start, mid, end)

Runtime Analysis:
MergeSort

/** sort A[start..end] using mergesort */
mergeSort(A, start, end):
 if (end-start < 2):
 return
 mid = (end+start)/2

 mergeSort(A,start,mid)
 mergeSort(A,mid, end)

 merge(A, start, mid, end)

O(1)
O(1)

O(n)

O(?)
O(?)

2. How How many calls are made?

How many calls to mergesort?

