
CSCI 241
Lecture 8

Runtime Analysis Revisited

Announcements
• No lab this week (work on A1)

• Quiz on Friday (as always)

Goals:

• Know how to determine the big-O runtime
(aka asymptotic runtime class) of an algorithm
given the number of operations it performs.

• Understand the basics of counting operations
in recursive algorithms.

• Know the runtime complexity of the sorting
algorithms we’ve covered.

Runtime Analysis: Overview
Why? We want a measure of performance
where

• it is independent of what computer we run it on.  

• Dependence on problem size is made explicit. 
 

• it is simpler than a raw count of operations and
focuses on performance on large problem sizes.

Solution: count operations instead of clock time.

Solution: express runtime as a function of n
(or whatever variables define problem size)

Solution: ignore constants, analyze asymptotic runtime.

How?

1. Count the number of primitive (constant-time)
operations that occur over the entire execution of
the algorithm. 
 
 
 

2. Drop constants and lower-order terms to find the
asymptotic runtime class.

Runtime Analysis: Overview

e.g., sillyFindMax: 2 + 5N + 6N2

How?

1. Count the number of primitive (constant-time)
operations that occur over the entire execution of
the algorithm. 
 
 
 

2. Drop constants and lower-order terms to find the
asymptotic runtime class.

Runtime Analysis: Overview

e.g., sillyFindMax: 2 + 5N + 6N2

How?

1. Count the number of primitive (constant-time)
operations that occur over the entire execution of
the algorithm. 
 
 
 

2. Drop constants and lower-order terms to find the
asymptotic runtime class.

Runtime Analysis: Overview

e.g., sillyFindMax: 2 + 5N + 6N2

Really? *any* constant?
A practical argument:

Really? *any* constant?

• My MacBook Pro from 2013: 3.17 gigaFLOPS
A practical argument:

Really? *any* constant?

• My MacBook Pro from 2013: 3.17 gigaFLOPS

• Fastest supercomputer as of Nov. 2019: 200 petaFLOPS

A practical argument:

Really? *any* constant?

• My MacBook Pro from 2013: 3.17 gigaFLOPS

• Fastest supercomputer as of Nov. 2019: 200 petaFLOPS

• Supercomputer is 63,091,482 times faster.

A practical argument:

zn2 on a supercomputer

n on my macbook

zn2 on a supercomputer

n on my macbook

z

n2 algorithm may be faster here!

n2 on a supercomputer

n on my macbook

Asymptotic Runtime Class

• Tells us how the runtime grows as the input size grows.

• Doesn't tell us anything about runtime when the input is
small!

or, "big-O" runtime

 Common Complexities

Counting Operations
What’s a constant-time operation?

• Anything that doesn’t depend on the input
size:

• Reading/writing from/to a variable or array location.

• Evaluating an arithmetic or boolean expression.

• Returning from a method.

Counting Operations
What’s a constant-time operation?

• Anything that doesn’t depend on the input
size:

• Reading/writing from/to a variable or array location.

• Evaluating an arithmetic or boolean expression.

• Returning from a method.

Counting Operations
What’s a constant-time operation?

• Anything that doesn’t depend on the input
size:

• Reading/writing from/to a variable or array location.

• Evaluating an arithmetic or boolean expression.

• Returning from a method.

int i = 2; int b = 4; a[i] = b;

Counting Operations
What’s a constant-time operation?

• Anything that doesn’t depend on the input
size:

• Reading/writing from/to a variable or array location.

• Evaluating an arithmetic or boolean expression.

• Returning from a method.

int i = 2; int b = 4; a[i] = b;

int i = 0; int j = i+4; int k = i*j;

Counting Operations
What’s a constant-time operation?

• Anything that doesn’t depend on the input
size:

• Reading/writing from/to a variable or array location.

• Evaluating an arithmetic or boolean expression.

• Returning from a method.

int i = 2; int b = 4; a[i] = b;

int i = 0; int j = i+4; int k = i*j;
return k;

Counting Operations

Key intuition:

What’s a constant-time operation?

• Anything that doesn’t depend on the input
size:

• Reading/writing from/to a variable or array location.

• Evaluating an arithmetic or boolean expression.

• Returning from a method.

int i = 2; int b = 4; a[i] = b;

int i = 0; int j = i+4; int k = i*j;
return k;

Counting Operations

Key intuition:
• These don’t take identical amounts of time, but the times are

within a constant factor of each other.

What’s a constant-time operation?

• Anything that doesn’t depend on the input
size:

• Reading/writing from/to a variable or array location.

• Evaluating an arithmetic or boolean expression.

• Returning from a method.

int i = 2; int b = 4; a[i] = b;

int i = 0; int j = i+4; int k = i*j;
return k;

Counting Operations

Key intuition:
• These don’t take identical amounts of time, but the times are

within a constant factor of each other.
• Same for running the same operation on a different computer.

What’s a constant-time operation?

• Anything that doesn’t depend on the input
size:

• Reading/writing from/to a variable or array location.

• Evaluating an arithmetic or boolean expression.

• Returning from a method.

int i = 2; int b = 4; a[i] = b;

int i = 0; int j = i+4; int k = i*j;
return k;

Counting Operations
What’s not a constant-time operation?

• Anything that does depend on the input
size, e.g.:

• Looping over all values in an array of size n.

• Recursively checking whether a string is a palindrome

• Sorting an array

• Most nontrivial algorithms / data structure operations
we’ll cover in this class.

Counting Operations
What happens when the number of times
executed is variable / depends on the data?

• We have to specify whether we want worst-
case, average-case (aka expected-case), or
best-case runtime.
public int findMax(int[] a) {
 int currentMax = a[0];
 for (int i = 1; i < a.length; i++) {
 if (currentMax < a[i]) {
 currentMax = a[i];
 }
 }
}

Counting Operations
What happens when the number of times
executed is variable / depends on the data?

• We have to specify whether we want worst-
case, average-case (aka expected-case), or
best-case runtime.
public int findMax(int[] a) {
 int currentMax = a[0];
 for (int i = 1; i < a.length; i++) {
 if (currentMax < a[i]) {
 currentMax = a[i];
 }
 }
}

times executed
depends on
contents of a!

Counting Operations
What happens when the number of times
executed is variable / depends on the data?

• Worst-case is usually the important one,
with notable exceptions for algorithms that
beat asymptotically faster algorithms in
practice.

• Quicksort is worst-case O(n^2) but often
beats MergeSort in practice

Counting Strategies Review:
1. Simple counting

/** Insert val into the list in after pred.
 * Precondition: pred is not null */
public void addAfter(Node pred, int val) {
 Node newNode = new Node(val);
 new_node.next = pred.next;
 pred.next = newNode;
}

/** A singly linked list node */
public class Node {
 int value;
 Node next;
 public Node(int v) {
 value = v;
 }
}

1
1
1

Counting Strategies Review:
1. Simple counting - for loop

for (int i = 0; i < n; i++) {
 loopBody(i);
}

// is equivalent to:

int i = 0;
while (i < n) {
 loopBody(i);
 i++;
}

1 per iteration

1
1 per iteration

1 per iteration

Counting Strategies Review:
1. Simple counting - for loop

for (int i = 0; i < n; i++) {
 loopBody(i);
}

// is equivalent to:

int i = 0;
while (i < n) {
 loopBody(i);
 i++;
}

1 per iteration

1
1 per iteration

1 per iteration

How many iterations?

i takes on values 0..n, of which there are n.

Counting Strategies Review:
1. Simple counting - for loop

for (int i = 0; i < n; i++) {
 loopBody(i);
}

// is equivalent to:

int i = 0;
while (i < n) {
 loopBody(i);
 i++;
}

How many iterations?

i takes on values 0..n, of which there are n.

1
n
n * runtime of loopBody
n

Counting Strategies Review:
1. Simple counting - for loop

for (int i = 0; i < n; i++) {
 loopBody(i);
}

// is equivalent to:

int i = 0;
while (i < n) {
 loopBody(i);
 i++;
}

How many iterations?

i takes on values 0..n, of which there are n.

1
n
n * runtime of loopBody
n

Total runtime:

1 + 2n + n*[runtime of loopBody]

Counting Strategies:
2. Aggregate Analysis

Not as easy case:

1. Identify all primitive operations

2. Trace through the algorithm, reasoning about the loop
bounds in order to count the worst-case number of
times each operation happens.

// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

A sortedInvariant: ?
i

AT MOST How many times do we call swap() during iteration i?

Counting Strategies:
2. Aggregate Analysis

// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

A sortedInvariant: ?
i

AT MOST How many times do we call swap() during iteration i?

Counting Strategies:
2. Aggregate Analysis

// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

A sortedInvariant: ?
i

AT MOST How many times do we call swap() during iteration i?

j begins at i and could go as far as 1: that’s as many as i swaps at iteration i

Counting Strategies:
2. Aggregate Analysis

// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

A sortedInvariant: ?
i

AT MOST How many times do we call swap() during iteration i?

j begins at i and could go as far as 1: that’s as many as i swaps at iteration i
Number of swaps: 1 in 1st iteration + 2 in 2nd iteration + … + n in nth iteration
1 + 2 + 3 + … + n-1 + n = (n * (n-1)) / 2 = (n^2 - n) / 2

Counting Strategies:
2. Aggregate Analysis

// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

AT MOST How many times do we call swap() during iteration i?

j begins at i and could go as far as 1: that’s as many as i swaps at iteration i
Number of swaps: 1 in 1st iteration + 2 in 2nd iteration + … + n in nth iteration
1 + 2 + 3 + … + n-1 + n = (n * (n-1)) / 2 = (n2 - n) / 2

Counting Strategies:
2. Aggregate Analysis

// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

AT MOST How many times do we call swap() during iteration i?

j begins at i and could go as far as 1: that’s as many as i swaps at iteration i
Number of swaps: 1 in 1st iteration + 2 in 2nd iteration + … + n in nth iteration
1 + 2 + 3 + … + n-1 + n = (n * (n-1)) / 2 = (n2 - n) / 2

Counting Strategies:
2. Aggregate Analysis

(n2 - n)/2 => n2 / 2 - n / 2 => n2 - n => O(n2)

What about recursion?
Much like loops:

1. How much work is actually done per call?

2. How many calls are made?

• This is simpler when the work per call is the same.

• Sometimes the work per call depends on n.

Operation Counting in
Recursive Methods: Example

/** Prints the linked list starting at head */
public static void printList(Node head) {

 if (head != null) {
 System.out.println(head)
 printList(head.next)
}

You try one

for i in N..0:
 if A[i] == 5:

return i;

What's the big-O runtime of this?

A. O(1)

B. O(n)

C. O(n-5)

D. O(n2)

Another!

public static void fn(int n):
 if n < 0:
 return n

 return fn(n-2);

What's the big-O runtime of this?

A. O(1)

B. O(n)

C. O(n log n)

D. O(n2)

