CSCI 241

Lecture 8
Runtime Analysis Revisited

Announcements

* No lab this week (work on A1)

e Quiz on Friday (as always)

Goals:

e Know how to determine the big-O runtime
(aka asymptotic runtime class) of an algorithm
given the number of operations it performs.

e Understand the basics of counting operations
In recursive algorithms.

 Know the runtime complexity of the sorting
algorithms we’ve covered.

Runtime Analysis: Overview

Why? We want a measure of performance
where

* it is independent of what computer we run it on.
Solution: count operations instead of clock time.

* Dependence on problem size is made explicit.

Solution: express runtime as a function of n
(or whatever variables define problem size)

* it is simpler than a raw count of operations and
focuses on performance on large problem sizes.

Solution: ignore constants, analyze asymptotic runtime.

Runtime Analysis: Overview
How?

1. Count the number of primitive (constant-time)
operations that occur over the entire execution of
the algorithm.

e.g., sillyFindMax: 2 +5ﬁ + BN

A

2. Drop constants and lower-order terms to find the
asymptotic runtime class.

o(n?)

Runtime Analysis: Overview
How?

1. Count the number of primitive (constant-time)
operations that occur over the entire execution of
the algorithm.

e.g., sillyFindMax: 2 + SN + 6N-Z

2. _and lower-order terms to find the

asymptotic runtime class.

Runtime Analysis: Overview
How?

1. Count the number of primitive (constant-time)
operations that occur over the entire execution of
the algorithm.

e.g., sillyFindMax: 2 + SN + 6N-Z

: _and lower-order terms to find the

asymptotic runtime class.

Really? *any* constant?

A practical argument:

Really? *any* constant?

A practical argument:
e My MacBook Pro from 2013: 3.17 gigaFLOPS

‘Q faﬁ @ 630\\/\ \'

e ng’ 28
Seeond

Really? *any* constant?

A practical argument:
e My MacBook Pro from 2013: 3.17 gigaFLOPS

» Fastest supercomputer as of Nov. 2019: 200 petaFLOPS

Really? *any* constant?

A practical argument:
e My MacBook Pro from 2013: 3.17 gigaFLOPS

» Fastest supercomputer as of Nov. 2019: 200 petaFLOPS

e Supercomputer is 63,091,482 times faster.

Input interpretation:
vl

@ N2 on a supercomputer
plot n—01t1000000000
91482
n on my macbook
IS)]\/

@ Enlarge | ¥ Data | @ Customize | A Plaintext ‘ & |Interactive

1 x1018 | e
8x1017 |
6 x1017 |

4x1017 | >

<1017 |

r

|

2x108 4x108 6x108 Bx108 1x109 T £3091482n

Input interpretation:

@ Enlarge | ¥ Data | @ Customize

I IV

] »
o

B >

r

plot

N

/)

2
n

63091482 n

n2 on a supercomputer

0 to 1000000000
n on my macbook

A Plaintext | ® Interactive

Input interpretation:
2 n2 on a supercomputer

plot n-=0ro 1000000000

63091482 n
o n on my macbook

@ Enlarge | ¥ Data | @ Customize | A Plaintext | @ Interactive

I IVL.

«1018 |

p—

8x1017 |
6 x1017 |
4x1017|

2 %1017 |

9 ==63091482n

b x10% 4x10% 6x10° 8x10% 1x10°

n2 algorithm may be faster here!

Asymptotic Runtime Class

or, "big-O" runtime

* Tells us how the runtime grows as the input size grows.

* Doesn't tell us anything about runtime when the input is
small!

Operations

Common Complexities

Big-O Complexity Chart
[Horriote] o] rair| | oo (SGETIGRE]

Counting Operations

What’s a constant-time operation? g(\>

* Anything that doesn’t depend on the input
size:

e Reading/writing from/to a variable or array location.
e Evaluating an arithmetic or boolean expression.

e Returning from a method.

o 1 COVLS}W\%“?& oaC Gy of tle cbove

Counting Operations

What’s a constant-time operation?

* Anything that doesn’t depend on the input
size:

e Reading/writing from/to a variable or array location.

e Evaluating an arithmetic or boolean expression.

e Returning from a method.

Counting Operations

What’s a constant-time operation?

* Anything that doesn’t depend on the input
size:
e Reading/writing from/to a variable or array location.
int 1 = 2; int b = 4; a[i] = b;

e Evaluating an arithmetic or boolean expression.

e Returning from a method.

Counting Operations

What’s a constant-time operation?

* Anything that doesn’t depend on the input
size:

e Reading/writing from/to a variable or array location.
int 1 = 2; int b = 4; a[i] = b;
e Evaluating an arithmetic or boolean expression.
int 1 = 0; int j = i+4; int k = i*7j;
e Returning from a method.

Counting Operations

What’s a constant-time operation?

* Anything that doesn’t depend on the input
size:

e Reading/writing from/to a variable or array location.
int 1 = 2; int b = 4; a[i] = b;

e Evaluating an arithmetic or boolean expression.
int 1 = 0; int j = i+4; int k = i*7j;

* Returning from a method. _ k;

Counting Operations

What’s a constant-time operation?

* Anything that doesn’t depend on the input
size:

e Reading/writing from/to a variable or array location.
int 1 = 2; int b = 4; a[i] = b;
e Evaluating an arithmetic or boolean expression.
int 1 = 0; int j = i+4; int k = i*7j;
e Returning from a method.

- return k;
Key intuition:

Counting Operations

What’s a constant-time operation?

* Anything that doesn’t depend on the input
size:

e Reading/writing from/to a variable or array location.
int 1 = 2; int b = 4; a[i] = b;
e Evaluating an arithmetic or boolean expression.
int 1 = 0; int j = i+4; int k = i*7j;
e Returning from a method.
Key intuition:
e These don’t take identical amounts of time, but the times are
within a constant factor of each other.

return k;

Counting Operations

What’s a constant-time operation?

* Anything that doesn’t depend on the input
size:

e Reading/writing from/to a variable or array location.
int 1 = 2; int b = 4; a[i] = b;
e Evaluating an arithmetic or boolean expression.
int 1 = 0; int j = i+4; int k = i*7j;
e Returning from a method.
Key intuition:
e These don’t take identical amounts of time, but the times are
within a constant factor of each other.
e Same for running the same operation on a different computer.

return k;

Counting Operations

What’s not a constant-time operation?

* Anything that does depend on the input
size, e.g.:

e Looping over all values in an array of size n.
e Recursively checking whether a string is a palindrome
e Sorting an array

e Most nontrivial algorithms / data structure operations
we’ll cover in this class.

Counting Operations

What happens when the number of times
executed is variable / depends on the data?

* WWe have to specify whether we want worst-
case, average-case (aka expected-case), or
best-case runtime.

public int findMax(int[] a) {
int currentMax = a[0];
for (int 1 = 1; 1 < a.length; i++) {

if (currentMax < af[i]) égé\\\§§E§LO&V“NTX

currentMax = a[1],7Q\

}
}
}

Counting Operations

What happens when the number of times
executed is variable / depends on the data?

* WWe have to specify whether we want worst-
case, average-case (aka expected-case), or

best-case runtime.
public int findMax(int[] a) {

int currentMax = a[0];
for (int i = 1; i < a.length; i++) {

if (currentMax < a[i]) {
currentMax = a[il;| #times executed
} depends on

y } contents of al

Counting Operations

What happens when the number of times
executed is variable / depends on the data?

» Worst-case is usually the important one,
with notable exceptions for algorithms that

beat asymptotically faster algorithms in
practice.

e Quicksort is worst-case O(n*2) but often
beats MergeSort in practice

Counting Strategies Review:
1. Simple counting

/** A singly linked list node */
public class Node {
int value;
Node next;
public Node(int v) {
value = v;

}
}

/** Insert val into the list in after pred.
* Precondition: pred is not, null */
public void addAfter(Node pred, int wval) {
Node newNode = new Node(val); 1 D+@ﬁﬁ00)
new node.next = pred.next; i
pred.next = newNode; 1
Q)

}

Counting Strategies Review:
1. Simple counting - for loop

) k)m(@c)&?ﬁ’*)/\
for (int 1 = 0; i < %Qoaﬁﬁo@&)-n
loopBody (1) ; Y7°)Oqﬂ§@@

—

// is equivalent to:

G..) Nn-0 ;&@WM

CO)

y

.
@< D) { — 1 periteration N - L)

—>1loopBody (1) ; 1 per iteration 1+ ke ot)“’fm”
it++; 1 per iteration 0O
}

Counting Strategies Review:
1. Simple counting - for loop

for (int 1 = 0; 1 < n; i++) {
loopBody (1) ;
}

// is equivalent to:

int 1 = 0; 1
while (i < n) {—— 1 periteration
loopBody (1) ; 1 per iteration

1++; 1 per iteration
}
How many iterations?
| takes on values 0..n, of which there are n.

Counting Strategies Review:
1. Simple counting - for loop
for (int 1 = 0; i < n; i++) {

loopBody (1) ;
}

// is equivalent to:

int 1 = 0; 1
while (i < n) { N
loopBody(1); n * runtime of loopBody
i++; N
}
How many iterations?
| takes on values 0..n, of which there are n.

Counting Strategies Review:
1. Simple counting - for loop

for (int 1 = 0; 1 < n; i++) {
loopBody (1) ;
}
Total runtime:
// is equivalent to: 1 4+ 2n + n*[runtime of loopBody]

int 1 = 0; 1
while (i < n) { N
loopBody (1) ; n * runtime of loopBody
i++; n
}
How many iterations?
| takes on values 0..n, of which there are n.

Counting Strategies:
2. Aggregate Analysis
Not as easy case:

1. ldentify all primitive operations

2. Trace through the algorithm, reasoning about the loop
bounds in order to count the worst-case number of

times each operation happens.

Counting Strategies:
2. Aggregate Analysis

// Sorts A using insertion sort
insertionSort (A):
i = 0;
while 1 < A.length:
Jj = i;
while j > 0 and A[j] < A[]-1]:
swap(A[J], A[J-1])

J__
i++

Invariant: 2 sorted ?

AT MOST How many times do we call swap() during iteration i?

Counting Strategies:
2. Aggregate Analysis

// Sorts A using insertion sort
insertionSort (A):
i = 0;
while 1 < A.length:
Jj = i;
while j > 0 and A[j] < A[]-1]:
swap(A[J], A[J-1])

J__
i++

Invariant: 2 sorted ?

AT MOST How many times do we call swap() during iteration i?

Counting Strategies:
2. Aggregate Analysis

// Sorts A using insertion sort
insertionSort (A):
i = 0;
while 1 < A.length:
Jj = i;
while j > 0 and A[j] < A[]-1]:
swap(A[J], A[J-1])

J__
i++

Invariant: 2 sorted ?

AT MOST How many times do we call swap() during iteration i?

j begins at i and could go as far as 1: that’s as many as i swaps at iteration i

Counting Strategies:
2. Aggregate Analysis

// Sorts A using insertion sort

insertionSort (A): N
i = 0;
while i1 < A.length: Nn-)
j = i N~7
while j > 0 and A[j] < A[J-1]: .
swap (A , =
== N (2) it
) o))) N
i++ ﬁif
i ks ,
Invariant: a sorted ? OM)

AT MOST How many times do we call swap() during iteration i?

j begins at i and could go as far as 1: that’s as many as i swaps at iteration i

Number of swaps: 1 in 1st iteration + 2 in 2nd iteration + ... + n in nth iteration
1+2+3+...+n-1+n=(n*n-1)/2=(n"2-n)/2

Counting Strategies:
2. Aggregate Analysis

// Sorts A using insertion sort
insertionSort (A):
i = 0;
while 1 < A.length:
J = i
while j > 0 and A[j] < A[]-1]:
swap (A[j], A[F-1])
J——
i++
AT MOST How many times do we call swap() during iteration i?

j begins at i and could go as far as 1: that’s as many as i swaps at iteration i

Number of swaps: 1 in 1st iteration + 2 in 2nd iteration + ... + n in nth iteration
1+42+3+...+n-1+n=(n*(n-1))/2=(n2-n)/2

Counting Strategies:
2. Aggregate Analysis

// Sorts A using insertion sort
insertionSort (A):
i = 0;
while 1 < A.length:
J = i
while j > 0 and A[j] < A[]-1]:
swap (A[j], A[F-1])
J——
i++
AT MOST How many times do we call swap() during iteration i?

j begins at i and could go as far as 1: that’s as many as i swaps at iteration i

Number of swaps: 1 in 1st iteration + 2 in 2nd iteration + ... + n in nth iteration
1+42+3+...+n-1+n=(n*(n-1))/2=(n2-n)/2

(n2-n)/2 =>n2/2-n/2=>n2-n=>0(n?

What about recursion?

Much like loops:

1. How much work is actually done per call? |
(ot Lovniny reasive_call)

2. How many calls are made'?c

e This is simpler when the work per call is the same.

e Sometimes the work per call depends on n.

Operation Counting in
Recursive Methods: Example

/** Prints the linked list starting at head */
public static void printList(Node head) {

efOCD
if (head != null) {
System.out. println(head)é’<j()
printList (head. next
} Y-

Nel®)

.
2. N wl‘jv
= O(n)

You try one

What's the big-O runtime of this? SO rutve. Com

Reor: CSCTCYHI
for i in N.
if A[i] == 5 5 \
retarn i; 1, n..0 73 6,6 ... l))é
W\/
O N

A. O(1)
<B. On) ™
C. O(n-5)
D. O(n?

Another!

] Ho vyl
: >

What's the big-O runtime of this?)
Lo vty galls?

public static void fn(int n):
if n < O:
return n

