CSCI 241
Lecture 8
Runtime Analysis Revisited
Announcements

• No lab this week (work on A1)

• Quiz on Friday (as always)
Goals:

• Know how to determine the big-O runtime (aka asymptotic runtime class) of an algorithm given the number of operations it performs.

• Understand the basics of counting operations in recursive algorithms.

• Know the runtime complexity of the sorting algorithms we’ve covered.
Runtime Analysis: Overview

Why? We want a measure of performance where

- it is *independent* of what computer we run it on.
 Solution: count *operations* instead of clock time.

- Dependence on *problem size* is made explicit.
 Solution: express runtime as a function of \(n \) (or whatever variables define problem size)

- it is *simpler* than a raw count of operations and focuses on performance on *large problem sizes*.
 Solution: ignore constants, analyze *asymptotic* runtime.
Runtime Analysis: Overview

How?

1. Count the number of primitive (constant-time) operations that occur over the entire execution of the algorithm.

 e.g., sillyFindMax: \(2 + 5N + 6N^2 \)

2. Drop constants and lower-order terms to find the asymptotic runtime class.

 \(O(n^2) \)
Runtime Analysis: Overview

How?

1. Count the number of primitive (constant-time) operations that occur over the entire execution of the algorithm.

 e.g., sillyFindMax: $2 + 5N + 6N^2$

2. **Drop constants** and lower-order terms to find the asymptotic runtime class.
Runtime Analysis: Overview

How?

1. Count the number of primitive (constant-time) operations that occur over the entire execution of the algorithm.

 e.g., sillyFindMax: $2 + 5N + 6N^2$

2. Drop constants and lower-order terms to find the asymptotic runtime class.
Really? *any* constant?

A practical argument:
Really? *any* constant?

A practical argument:

- My MacBook Pro from 2013: 3.17 gigaFLOPS
Really? *any* constant?

A practical argument:

- My MacBook Pro from 2013: 3.17 gigaFLOPS
- Fastest supercomputer as of Nov. 2019: 200 petaFLOPS
Really? *any* constant?

A practical argument:

- My MacBook Pro from 2013: 3.17 gigaFLOPS
- Fastest supercomputer as of Nov. 2019: 200 petaFLOPS
- Supercomputer is 63,091,482 times faster.
<table>
<thead>
<tr>
<th>(n^2) on a supercomputer</th>
<th>(n = 0) to (1000000000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(63091482n) on my macbook</td>
<td></td>
</tr>
</tbody>
</table>
Plot: n^2 on a supercomputer
$n = 0$ to 1000000000 on my macbook
The plot shows that for large values of n, the n^2 algorithm may be faster than $63091482n$ on a supercomputer. However, on my MacBook, n^2 algorithm may be faster here!
Asymptotic Runtime Class

or, "big-O" runtime

• Tells us how the runtime grows as the input size grows.

• Doesn't tell us anything about runtime when the input is small!
Common Complexities

Big-O Complexity Chart

Operations

Elements

O(n!)
O(2^n)
O(n^2)
O(n log n)
O(n)
O(log n), O(1)
Counting Operations

What’s a constant-time operation? $O(1)$

• Anything that **doesn’t** depend on the input size:

 • Reading/writing from/to a variable or array location.

 • Evaluating an arithmetic or boolean expression.

 • Returning from a method.

• A constant # of any of the above
Counting Operations

What’s a constant-time operation?

• Anything that doesn’t depend on the input size:
 • Reading/writing from/to a variable or array location.
 • Evaluating an arithmetic or boolean expression.
 • Returning from a method.
Counting Operations

What’s a constant-time operation?

- Anything that doesn’t depend on the input size:
 - Reading/writing from/to a variable or array location.

    ```
    int i = 2; int b = 4; a[i] = b;
    ```
 - Evaluating an arithmetic or boolean expression.
 - Returning from a method.
Counting Operations

What’s a constant-time operation?

• Anything that doesn’t depend on the input size:

 • Reading/writing from/to a variable or array location.

    ```java
    int i = 2; int b = 4; a[i] = b;
    ```

 • Evaluating an arithmetic or boolean expression.

    ```java
    int i = 0; int j = i+4; int k = i*j;
    ```

 • Returning from a method.
Counting Operations

What’s a constant-time operation?

• Anything that doesn’t depend on the input size:

 • Reading/writing from/to a variable or array location.

    ```
    int i = 2; int b = 4; a[i] = b;
    ```

 • Evaluating an arithmetic or boolean expression.

    ```
    int i = 0; int j = i+4; int k = i*j;
    ```

 • Returning from a method.

    ```
    return k;
    ```
Counting Operations

What’s a constant-time operation?

• Anything that doesn’t depend on the input size:

 • Reading/writing from/to a variable or array location.

    ```java
    int i = 2; int b = 4; a[i] = b;
    ```

 • Evaluating an arithmetic or boolean expression.

    ```java
    int i = 0; int j = i+4; int k = i*j;
    ```

 • Returning from a method.

    ```java
    return k;
    ```

Key intuition:
Counting Operations

What’s a constant-time operation?

- Anything that doesn’t depend on the input size:

 - Reading/writing from/to a variable or array location.
    ```
    int i = 2; int b = 4; a[i] = b;
    ```

 - Evaluating an arithmetic or boolean expression.
    ```
    int i = 0; int j = i+4; int k = i*j;
    ```

 - Returning from a method.
    ```
    return k;
    ```

Key intuition:

- These don’t take identical amounts of time, but the times are within a constant factor of each other.
Counting Operations

What’s a constant-time operation?

• Anything that doesn’t depend on the input size:
 • Reading/writing from/to a variable or array location.
    ```java
    int i = 2; int b = 4; a[i] = b;
    ```
 • Evaluating an arithmetic or boolean expression.
    ```java
    int i = 0; int j = i+4; int k = i*j;
    ```
 • Returning from a method.
    ```java
    return k;
    ```

Key intuition:
• These don’t take identical amounts of time, but the times are within a **constant factor** of each other.
• Same for running the **same** operation on a **different** computer.
Counting Operations

What’s not a constant-time operation?

- Anything that **does** depend on the input size, e.g.:
 - Looping over all values in an array of size n.
 - Recursively checking whether a string is a palindrome.
 - Sorting an array.
 - Most nontrivial algorithms / data structure operations we’ll cover in this class.
Counting Operations

What happens when the number of times executed is variable / depends on the data?

• We have to specify whether we want worst-case, average-case (aka expected-case), or best-case runtime.

```java
public int findMax(int[] a) {
    int currentMax = a[0];
    for (int i = 1; i < a.length; i++) {
        if (currentMax < a[i]) {
            currentMax = a[i];
        }
    }
}
```
Counting Operations
What happens when the number of times executed is variable / depends on the data?

• We have to specify whether we want worst-case, average-case (aka expected-case), or best-case runtime.

```java
public int findMax(int[] a) {
    int currentMax = a[0];
    for (int i = 1; i < a.length; i++) {
        if (currentMax < a[i]) {
            currentMax = a[i]; // # times executed depends on contents of a!
        }
    }
}
```
Counting Operations

What happens when the number of times executed is variable / depends on the data?

- Worst-case is usually the important one, with notable exceptions for algorithms that beat asymptotically faster algorithms in practice.

- Quicksort is worst-case $O(n^2)$ but often beats MergeSort in practice.
Counting Strategies Review:
1. Simple counting

/** A singly linked list node */
public class Node {
 int value;
 Node next;
 public Node(int v) {
 value = v;
 }
}

/** Insert val into the list in after pred.
 * Precondition: pred is not null */
public void addAfter(Node pred, int val) {
 Node newNode = new Node(val);
 newNode.next = pred.next;
 pred.next = newNode;
}
Counting Strategies Review:

1. Simple counting - for loop

```java
for (int i = 0; i < n; i++) {
    loopBody(i);
}
```

// is equivalent to:

```java
int i = 0;
while (i < n) {
    loopBody(i);
    i++;
}
```

1 per iteration
Counting Strategies Review:
1. Simple counting - for loop

```java
for (int i = 0; i < n; i++) {
    loopBody(i);
}

// is equivalent to:

int i = 0;  // 1 per iteration
while (i < n) {
    loopBody(i);  // 1 per iteration
    i++;  // 1 per iteration
}
```

How many iterations?
i takes on values 0..n, of which there are n.
Counting Strategies Review:
1. Simple counting - for loop

```java
for (int i = 0; i < n; i++) {
    loopBody(i);
}
```

// is equivalent to:

```java
int i = 0; // Note: i takes on values 0..n, of which there are n.
while (i < n) {
    loopBody(i);
    i++; // Note: n * runtime of loopBody
}
```

How many iterations?
- `i` takes on values 0..n, of which there are n.
Counting Strategies Review:
1. Simple counting - for loop

```
for (int i = 0; i < n; i++) {
    loopBody(i);
}
```

Total runtime:

// is equivalent to: 1 + 2n + n*[runtime of loopBody]

```
int i = 0;  //_________ 1
while (i < n) {  //________ n
    loopBody(i);  //________ n * runtime of loopBody
    i++;  //____________________ n
}
```

How many iterations?

i takes on values 0..n, of which there are n.
Counting Strategies:
2. Aggregate Analysis

Not as easy case:

1. Identify all primitive operations

2. Trace through the algorithm, reasoning about the loop bounds in order to count the worst-case number of times each operation happens.
Counting Strategies: 2. Aggregate Analysis

// Sorts A using insertion sort
insertionSortSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

Invariant: A \[\text{sorted}\] ?

AT MOST How many times do we call swap() during iteration i?
Counting Strategies: 2. Aggregate Analysis

// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

Invariant: A sorted

AT MOST How many times do we call swap() during iteration i?
Counting Strategies:
2. Aggregate Analysis

// Sorts A using insertion sort
insertionSortSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

Invariant: A sorted

AT MOST How many times do we call swap() during iteration i?

j begins at i and could go as far as 1: that’s as many as i swaps at iteration i
Counting Strategies: 2. Aggregate Analysis

// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

Invariant: A sorted

AT MOST How many times do we call swap() during iteration i?

j begins at i and could go as far as 1: that’s as many as i swaps at iteration i
Number of swaps: 1 in 1st iteration + 2 in 2nd iteration + … + n in nth iteration
1 + 2 + 3 + … + n-1 + n = (n * (n-1)) / 2 = (n^2 - n) / 2
Counting Strategies:
2. Aggregate Analysis

// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

AT MOST How many times do we call swap() during iteration i?

j begins at i and could go as far as 1: that’s as many as i swaps at iteration i
Number of swaps: 1 in 1st iteration + 2 in 2nd iteration + ... + n in n-th iteration
1 + 2 + 3 + ... + n-1 + n = (n * (n-1)) / 2 = (n^2 - n) / 2
// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

AT MOST How many times do we call swap() during iteration i?

j begins at i and could go as far as 1: that’s as many as i swaps at iteration i
Number of swaps: 1 in 1st iteration + 2 in 2nd iteration + ... + n in nth iteration
1 + 2 + 3 + ... + n-1 + n = (n * (n-1)) / 2 = (n^2 - n) / 2

(n^2 - n)/2 => n^2 / 2 - n / 2 => n^2 - n => O(n^2)
What about recursion?

Much like loops:

1. How much work is actually done per call? *(not counting recursive calls)*
2. How many calls are made?

 - This is simpler when the work per call is the same.
 - Sometimes the work per call depends on n.
/** Prints the linked list starting at head */
public static void printList(Node head) {
 if (head != null) {
 System.out.println(head) ;
 printList(head.next) ;
 }
}

1. O(1)
2. \(n \) calls \(\rightarrow O(n) \)

\(\ell \leftarrow O(1) \)
You try one

What's the big-O runtime of this?

```python
for i in N..0:
    if A[i] == 5:
        return i;
```

A. O(1)
B. O(n)
C. O(n-5)
D. O(n^2)
Another!

What's the big-O runtime of this?

```java
public static void fn(int n):
    if n < 0:
        return n
    return fn(n-2);
```

1. How much work per call? (not recursive)
 - A. O(1)
 - B. O(n)
 - C. O(n log n)
 - D. O(n^2)

2. How many calls?
 - n/2 + 1

 - `fn(n) < fn(n-2) < fn(n-4) < fn(n-6)`