
CSCI 241
Lecture 6

Quicksort


Stability; Non-Comparison Sorts

Radix Sort

 



Announcements
• Quiz 1 grades and review video out soon



Goals:
• Know what it means for a sorting algorithm 

to be stable 

• Understand the distinction between 
comparison and non-comparison sorts.


• Be prepared to implement radix sort.


• Know the definition of an in-place sorting 
algorithm.



Stability
Objects can be sorted on keys - different objects 
may have the same value.


A stable sort maintains the order of distinct 
elements with the same key. 


• Example: sort the following list on the tens place only:

Sorted stably:

unstably:
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Comparison sorts operate by comparing pairs of 
elements.

Examples: all four sorts we've seen so far!

...is there any other way to do it?
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How do you sort things 
without comparing them?

Suppose I gave you 10 sticky notes with the digits 0 through 9. 
What algorithm would you use to sort them?  

01 234 5 67 89

How many times did you need to look at each sticky note?


What if there are duplicates?



LSD Radix Sort
/** least significant digit radix sort A */
LSDRadixSort(A):
max_digits = max # digits in any element of A
for d in 0..max_digits:
  stably sort A on the dth least significant
  digit

// A is now sorted(!) ones place, then

tens place, then

hundreds place,

and so on
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Do you believe me?
/** least significant digit radix sort A */
LSDRadixSort(A):
max_digits = max # digits in any element of A
for d in 0..max_digits:
  stably sort A on the dth least significant
  digit

// A is now sorted(!)

Still don’t believe me? https://visualgo.net/en/sorting



LSD Radix Sort 
using queue buckets

Pseudocode from visualgo.net:

LSDRadixSort(A):
 create 10 buckets (queues) for each digit (0 to 9)
 for each digit (least- to most-significant):
   for each element in A:
     move element into its bucket based on digit
   for each bucket, starting from smallest digit
     while bucket is non-empty
       restore element to list



LSD Radix Sort 
using queue buckets

Pseudocode from visualgo.net:

LSDRadixSort(A):
 create 10 buckets (queues) for each digit (0 to 9)
 for each digit (least- to most-significant):
   for each element in A:
     move element into its bucket based on digit
   for each bucket, starting from smallest digit
     while bucket is non-empty
       restore element to list

LSD Intuition: sort on most-significant digit last; if tied, 
yield to the next most significant digit, and so on.

Only works because stability preserves orderings from less 
significant digits (previously sorted). 



Exercise: Radix sort this
[  7, 19, 21, 11, 14, 54, 1, 8]

Hint:  [07, 19, 21, 11, 14, 54, 01, 08]

LSDRadixSort(A):
 create 10 buckets (queues) for each digit (0 to 9)
 for each digit (least- to most-significant):
   for each element in A:
     move element into its bucket based on digit
   for each bucket, starting from smallest digit
     while bucket is non-empty
       restore element to list
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Exercise: Radix sort this
[07, 19, 61, 11, 14, 54, 01, 08]

Buckets

on 1’s place:

Sorted on 

1’s place:

Buckets

on 10’s place:

Sorted on 

10’s place:



LSD Radix Sort 
using counting sort

/** least significant digit radix sort A */
LSDRadixSort(A):
max_digits = max # digits in any element of A
for d in 0..max_digits:
  counting sort A on the dth least
  significant digit

// A is now sorted(!)



Counting Sort
Formalizes what you did with the 0-9 sticky notes:

• Handles duplicates

• Stable sort

• Less memory overhead than queue buckets

Intuition:

http://www.cs.miami.edu/home/burt/learning/
Csc517.091/workbook/countingsort.html

Pseudocode in CLRS (reproduced on the next slide).



Counting Sort - from CLRS
Notes:

• k is the base or radix (10 in our examples)

• B is filled with the sorted values from A.

• C maintains counts for each bucket.

• The final loop must go back-to-front to 

guarantee stability.



in-place sorts
One more property of sorting algorithms aside 
from runtime.

A sorting algorithm is considered in-place if:


the extra storage used doesn't depend on 
the size of the input.



in-place sorts
One more property of sorting algorithms aside 
from runtime.

A sorting algorithm is considered in-place if:


the extra storage used doesn't depend on 
the size of the input.

i.e., the array 
being sorted

i.e., not part of 
the input array




