
CSCI 241
Lecture 6

Quicksort

Stability; Non-Comparison Sorts

Radix Sort

Announcements
• Quiz 1 grades and review video out soon

Goals:
• Know what it means for a sorting algorithm

to be stable

• Understand the distinction between
comparison and non-comparison sorts.

• Be prepared to implement radix sort.

• Know the definition of an in-place sorting
algorithm.

Stability
Objects can be sorted on keys - different objects
may have the same value.

A stable sort maintains the order of distinct
elements with the same key.

• Example: sort the following list on the tens place only:

Sorted stably:

unstably:

Stability
Objects can be sorted on keys - different objects
may have the same value.

A stable sort maintains the order of distinct
elements with the same key.

• Example: sort the following list on the tens place only:

[21 23 35 48 61 63]Sorted stably:

unstably:

Stability
Objects can be sorted on keys - different objects
may have the same value.

A stable sort maintains the order of distinct
elements with the same key.

• Example: sort the following list on the tens place only:

[21 23 35 48 61 63]Sorted stably:

unstably:

[61 21 63 23 35 48]

Stability
Objects can be sorted on keys - different objects
may have the same value.

A stable sort maintains the order of distinct
elements with the same key.

• Example: sort the following list on the tens place only:

[21 23 35 48 61 63]Sorted stably:

unstably:

[61 21 63 23 35 48]

[23 21 35 48 61 63]

Stability
Objects can be sorted on keys - different objects
may have the same value.

A stable sort maintains the order of distinct
elements with the same key.

• Example: sort the following list on the tens place only:

Sorted stably:

unstably:

Stability
Objects can be sorted on keys - different objects
may have the same value.

A stable sort maintains the order of distinct
elements with the same key.

• Example: sort the following list on the tens place only:

[21 23 35 48 61 63]
Sorted stably:

unstably:

Stability
Objects can be sorted on keys - different objects
may have the same value.

A stable sort maintains the order of distinct
elements with the same key.

• Example: sort the following list on the tens place only:

[21 23 35 48 61 63]
Sorted stably:

unstably:

[61 23 63 21 35 48]

[23 21 35 48 61 63]

Stability
Objects can be sorted on keys - different objects
may have the same value.

A stable sort maintains the order of distinct
elements with the same key.

• Example: sort the following list on the tens place only:

[21 23 35 48 61 63]
Sorted stably:

unstably:

[61 23 63 21 35 48]

Comparison sorts operate by comparing pairs of
elements.

Examples: all four sorts we've seen so far!

...is there any other way to do it?

Comparison sorts operate by comparing pairs of
elements.

Examples: all four sorts we've seen so far!

...is there any other way to do it?

How do you sort without
comparing elements?

How do you sort things
without comparing them?

Suppose I gave you 10 sticky notes with the digits 0 through 9. 
What algorithm would you use to sort them?  

01 234 5 67 89

How do you sort things
without comparing them?

Suppose I gave you 10 sticky notes with the digits 0 through 9. 
What algorithm would you use to sort them?  

01 234 5 67 89

How many times did you need to look at each sticky note?

How do you sort things
without comparing them?

Suppose I gave you 10 sticky notes with the digits 0 through 9. 
What algorithm would you use to sort them?  

01 234 5 67 89

How many times did you need to look at each sticky note?

What if there are duplicates?

LSD Radix Sort
/** least significant digit radix sort A */
LSDRadixSort(A):
max_digits = max # digits in any element of A
for d in 0..max_digits:
 stably sort A on the dth least significant
 digit

// A is now sorted(!) ones place, then

tens place, then

hundreds place,

and so on

Do you believe me?
/** least significant digit radix sort A */
LSDRadixSort(A):
max_digits = max # digits in any element of A
for d in 0..max_digits:
 stably sort A on the dth least significant
 digit

// A is now sorted(!) [45, 26, 42, 32]

Do you believe me?
/** least significant digit radix sort A */
LSDRadixSort(A):
max_digits = max # digits in any element of A
for d in 0..max_digits:
 stably sort A on the dth least significant
 digit

// A is now sorted(!)

Do you believe me?
/** least significant digit radix sort A */
LSDRadixSort(A):
max_digits = max # digits in any element of A
for d in 0..max_digits:
 stably sort A on the dth least significant
 digit

// A is now sorted(!)

Still don’t believe me? https://visualgo.net/en/sorting

LSD Radix Sort
using queue buckets

Pseudocode from visualgo.net:

LSDRadixSort(A):
 create 10 buckets (queues) for each digit (0 to 9)
 for each digit (least- to most-significant):
 for each element in A:
 move element into its bucket based on digit
 for each bucket, starting from smallest digit
 while bucket is non-empty
 restore element to list

LSD Radix Sort
using queue buckets

Pseudocode from visualgo.net:

LSDRadixSort(A):
 create 10 buckets (queues) for each digit (0 to 9)
 for each digit (least- to most-significant):
 for each element in A:
 move element into its bucket based on digit
 for each bucket, starting from smallest digit
 while bucket is non-empty
 restore element to list

LSD Intuition: sort on most-significant digit last; if tied,
yield to the next most significant digit, and so on.

Only works because stability preserves orderings from less
significant digits (previously sorted).

Exercise: Radix sort this
[7, 19, 21, 11, 14, 54, 1, 8]

Hint: [07, 19, 21, 11, 14, 54, 01, 08]

LSDRadixSort(A):
 create 10 buckets (queues) for each digit (0 to 9)
 for each digit (least- to most-significant):
 for each element in A:
 move element into its bucket based on digit
 for each bucket, starting from smallest digit
 while bucket is non-empty
 restore element to list

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Exercise: Radix sort this
[07, 19, 61, 11, 14, 54, 01, 08]

Buckets

on 1’s place:

Sorted on

1’s place:

Buckets

on 10’s place:

Sorted on

10’s place:

LSD Radix Sort
using counting sort

/** least significant digit radix sort A */
LSDRadixSort(A):
max_digits = max # digits in any element of A
for d in 0..max_digits:
 counting sort A on the dth least
 significant digit

// A is now sorted(!)

Counting Sort
Formalizes what you did with the 0-9 sticky notes:

• Handles duplicates

• Stable sort

• Less memory overhead than queue buckets

Intuition:

http://www.cs.miami.edu/home/burt/learning/
Csc517.091/workbook/countingsort.html

Pseudocode in CLRS (reproduced on the next slide).

Counting Sort - from CLRS
Notes:

• k is the base or radix (10 in our examples)

• B is filled with the sorted values from A.

• C maintains counts for each bucket.

• The final loop must go back-to-front to

guarantee stability.

in-place sorts
One more property of sorting algorithms aside
from runtime.

A sorting algorithm is considered in-place if:

the extra storage used doesn't depend on
the size of the input.

in-place sorts
One more property of sorting algorithms aside
from runtime.

A sorting algorithm is considered in-place if:

the extra storage used doesn't depend on
the size of the input.

i.e., the array
being sorted

i.e., not part of
the input array

