CSCI 241
Lecture 4:
Intro to Runtime Analysis
Recursion
Mergesort intuition
Announcements

• Lab 2 and A1 are out!
• Lab 2 is done in the same repo as A1
• A1 is due a week from Friday
• A1 is bigger than you think.
Hours spent on A1 last time I taught this class
Goals

• Know how to count primitive operations to determine the runtime of an algorithm.

• Understand how recursive methods are executed.

• Be able to understand and develop recursive methods without thinking about the details of how they are executed.

• Gain intuition for how merge sort works
“Primitive” Operations

Things the computer can do in a “fixed” amount of time.

“fixed” - doesn’t depend on the input size (n)

A non-exhaustive list:

- **Get** or **set** the value of a variable or array location

 $a[7]$
 $\text{count}=4$

- **Evaluate** a simple expression

 $2 + 4 \quad a < b$

- **Return** from a method

 return 4
Strategies for counting primitive operations

Easiest case:

1. Identify all primitive operations
2. Determine how many time each one happens
3. Add them all up.
public int findMax(int[] a) {
 int currentMax = a[0];
 for (int i = 1; i < a.length; i++) {
 if (currentMax < a[i]) {
 currentMax = a[i];
 }
 }
 return currentMax;
}
public int findMax(int[] a) {
 int currentMax = a[0];
 for (int i = 1; i < a.length; i++) {
 if (currentMax < a[i]) {
 currentMax = a[i];
 }
 }
 return currentMax;
}

1 + (N-1) + 2(N-1)

1 + (N-1) + 2(N-1) = 7N-4
public int sillyFindMax(int[] a) {
 for (int i = 0; i < a.length; i++) {
 // check if anything is bigger than a[i]
 boolean isMax = true;
 for (int j = 0; j < a.length; j++) {
 if (a[j] > a[i]) {
 isMax = false; // found something bigger
 }
 }
 if (isMax) {
 return a[i];
 }
 }
}
public int sillyFindMax(int[] a) {
 for (int i = 0; i < a.length; i++) {
 // check if anything is bigger than a[i]
 boolean isMax = true;
 for (int j = 0; j < a.length; j++) {
 if (a[j] > a[i]) {
 isMax = false; // found something bigger
 }
 }
 if (isMax) {
 return a[i];
 }
 }
}

public int sillyFindMax(int[] a) {
 for (int i = 0; i < a.length; i++) {
 // check if anything is bigger than a[i]
 boolean isMax = true;
 for (int j = 0; j < a.length; j++) {
 if (a[j] > a[i]) {
 isMax = false; // found something bigger
 }
 }
 if (isMax) {
 return a[i];
 }
 }
 return 1;
}

// complexity analysis:
// The outer loop runs \(1 + N + 2N \) times.
// The inner loop runs \(N \) times.
// The overall time complexity is \(N(1+N+2N) \) or \(N(3N) \) depending on the implementation.
// The space complexity is \(N \).
Comparing findMaxes

- **findMax**: $7N-4$
- **sillyFindMax**: $7N^2 + 6n + 2$
Comparing findMaxes

- findMax: 7N - 4
- sillyFindMax: $7N^2 + 6n + 2$

sillyFindMax is $O(n^2)$
Comparing findMaxes

- findMax: $7N - 4$
- sillyFindMax: $7N^2 + 6n + 2$

sillyFindMax is $O(n^2)$

findMax is $O(n)$
Strategies for counting primitive operations

Not as easy case:

1. Identify all primitive operations

2. Trace through the algorithm, reasoning about the loop bounds in order to count the worst-case number of times each operation happens.
// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

Invariant: A sorted

AT MOST How many times do we call swap() during iteration i?

$\frac{n(n-1)}{2}$
// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

Invariant: A sorted

AT MOST How many times do we call swap() during iteration i?

j begins at i and could go as far as 1: that’s as many as i swaps at iteration i
// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

Invariant: \(A \) sorted \(i \)

AT MOST How many times do we call swap() during iteration \(i \)?

\(j \) begins at \(i \) and could go as far as 1: that’s as many as \(i \) swaps at iteration \(i \)

Number of swaps: 1 in 1st iteration + 2 in 2nd iteration + \(\ldots \) + \(n \) in \(n \)th iteration
\[
1 + 2 + 3 + \ldots + n-1 + n = \frac{n(n-1)}{2} = \frac{n^2 - n}{2}
\]
Let's talk about recursion.
Why are we talking about recursion, I thought we were learning about sorting?
Why are we talking about recursion, I thought we were learning about sorting?

```python
mergeSort(A, start, end):
    if (A.length < 2):
        return
    mid = (end + start)/2
    mergeSort(A, start, mid)
    mergeSort(A, mid, end)
    merge(A, start, mid, end)
```
How do we **execute** recursive methods?
How do we execute non-recursive methods?

\[x = \text{max}(1, 3) \]
How do we execute non-recursive methods?

\[
x = \max(1, 3) \\
=> 3
\]
How do we **execute** non-recursive methods?

\[x = \max(1, 3) \]

\[3 \]
How do we execute non-recursive methods?

\[x = 3 \]
How do we execute recursive methods?

```python
/** return n!; pre: n >= 0 */

fact(n):
    if n == 0:
        return 1
    return n * fact(n - 1)
```
How do we execute recursive methods?

```python
/** return n!; pre: n >= 0 */
fact(n):
    if n == 0:
        return 1
    return n * fact(n - 1)

fact(3)
```
How do we execute recursive methods?

```python
/** return n!; pre: n >= 0 */

fact(n):
    if n == 0:
        return 1
    return n * fact(n - 1)

fact(3)
=> 3 * fact(2)
```
How do we **execute** recursive methods?

```python
/** return n!; pre: n >= 0 */
fact(n):
    if n == 0:
        return 1
    return n * fact(n - 1)

fact(3)
=> 3 * fact(2)
    => 2 * fact(1)
```
How do we execute recursive methods?

```python
/** return n!; pre: n >= 0 */
fact(n):
    if n == 0:
        return 1
    return n * fact(n - 1)

fact(3)
=> 3 * fact(2)
=> 2 * fact(1)
=> 1 * fact(0)
```
How do we execute recursive methods?

```python
/** return n!; pre: n >= 0 */
fact(n):
    if n == 0:
        return 1
    return n * fact(n - 1)

fact(3)
=> 3 * fact(2)
=> 2 * fact(1)
=> 1 * fact(0)
=> 1
```
How do we execute recursive methods?

```python
/** return n!; pre: n >= 0 */
fact(n):
    if n == 0:
        return 1
    return n * fact(n - 1)

fact(3)
=> 3 * fact(2)
    => 2 * fact(1)
        => 1 * fact(0)
            1
```
How do we **execute** recursive methods?

```java
/** return n!; pre: n >= 0 */
fact(n):
  if n == 0:
    return 1
  return n * fact(n - 1)
```

`fact(3)`

=> `3 * fact(2)`

=> `2 * fact(1)`

=> `1 * 1`
How do we execute recursive methods?

```cpp
/** return n!; pre: n >= 0 */

fact(n):
    if n == 0:
        return 1
    return n * fact(n - 1)
```

```cpp
fact(3)
=> 3 * fact(2)
  => 2 * fact(1)
    => 1 * 1
```
How do we execute recursive methods?

```python
/** return n!; pre: n >= 0 */
fact(n):
    if n == 0:
        return 1
    return n * fact(n - 1)

fact(3)
=> 3 * fact(2)
    => 2 * fact(1)
        1
```
How do we execute recursive methods?

```python
/** return n!; pre: n >= 0 */
fact(n):
    if n == 0:
        return 1
    return n * fact(n - 1)

fact(3)
=> 3 * fact(2)
    => 2 * 1
```
How do we execute recursive methods?

```python
/** return n!; pre: n >= 0 */

fact(n):
    if n == 0:
        return 1
    return n * fact(n - 1)

fact(3)
=> 3 * fact(2)
    2
```
How do we **execute** recursive methods?

```python
/** return n!; pre: n >= 0 */
fact(n):
    if n == 0:
        return 1
    return n * fact(n - 1)

fact(3) => 3 * 2
```
How do we execute recursive methods?

```python
/** return n!; pre: n >= 0 */

fact(n):
    if n == 0:
        return 1
    return n * fact(n - 1)

fact(3)
=> 6
```
Your turn

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(n)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
</tr>
</tbody>
</table>
Your turn

Fibonacci:

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(n)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
</tr>
</tbody>
</table>

/** return the nth fibonacci number
 * precondition: n >= 0 */

fib(n):

 if n <= 1:
 return n

 return fib(n-1) + fib(n-2)
Your turn

Fibonacci:

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(n)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
</tr>
</tbody>
</table>

/** return the nth fibonacci number
 * precondition: n >= 0 */

fib(n):

 if n <= 1:
 return n
 return fib(n-1) + fib(n-2)

Problem 1: If I call fib(3),

A. How many times is fib called?
B. What value is returned?
Your turn

Fibonacci:

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(n)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
</tr>
</tbody>
</table>

/** return the nth fibonacci number */
* precondition: n >= 0 */

`fib(n):`

```python
if n <= 1:
    return n

return fib(n-1) + fib(n-2)
```

Problem 1: If I call `fib(3),`

A. How many times is `fib` called?
B. What value is returned?

1A - ABCD:

A. 3
B. 4
C. 5
D. 6
Your turn

Fibonacci:

<table>
<thead>
<tr>
<th>n:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(n):</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
</tr>
</tbody>
</table>

```c
/** return the nth fibonacci number
 * precondition: n >= 0 */

fib(n):
    if n <= 1:
        return n
    return fib(n-1) + fib(n-2)
```

If I call `fib(3),`

A. How many times is `fib` called? 5
B. What value is returned? 2
Your turn

Fibonacci:

<table>
<thead>
<tr>
<th>n:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>fib(n):</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
</tr>
</tbody>
</table>

/** return the nth fibonacci number
 * precondition: n >= 0 */

fib(n):

if n <= 1:
 return n

return fib(n-1) + fib(n-2)

Problem 2: If I call fib(4),
 A. How many times is fib called?
 B. What value is returned?
How do we understand recursive methods?