
CSCI 241
Lecture 3:

Insertion and Selection Sort

Intro to Runtime Analysis

Recursion

Announcements
• First programming assignment out Sunday.

• We’ll cover all the sorting algorithms you need by next
Wednesday.

• Lab 2 also out Sunday

• Done in the same repository as A1 - writing test code

Quiz 0
• Quiz 0 is today. Covers only review material.

• Will be scored but grading is based only on completion.

• Taken on gradescope.com between 10am to 10pm today.

• 15 minute time limit

• This is your trial run: make sure you can login and take
the quiz, etc. Later quizzes will count towards your grade.

Goals
• Be able to execute insertion sort and selection

sort on paper.

• Be able to implement insertion sort and
selection sort.

• Know how to count primitive operations to
determine the runtime of an algorithm.

• Understand how recursive methods are
executed.

Insertion Sort

https://visualgo.net/bn/sorting

Insert A[i] into the sorted sublist A[0..i-1].

Selection Sort
Find the smallest element in A[i..n] and place it at A[i].

Insertion Sort

https://visualgo.net/bn/sorting

Insert A[i] into the sorted sublist A[0..i-1].

Selection Sort
Find the smallest element in A[i..n] and place it at A[i].

A sortedInvariant: ?

A sorted, <= A[i..n]Invariant: ?

i

i

insertionSort(A):
 i = 0;
 while i < A.length:
 // push A[i] to its sorted position by repeatedly
 // swapping with the element to its left
 // increment i

selectionSort(A):
 i = 0;
 while i < A.length:
 // find min of A[i..A.length]
 // swap it with A[i]
 // increment i

A sortedInvariant: ?
i

A sorted, <= A[i..n]Invariant: ?
i

Insertion sort: Pseudocode
// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] > A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

A sortedInvariant: ?
i

Insertion Sort: Exercise
// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

A sortedInvariant: ?
i

Sort the following
array using insertion
sort:

 [1 4 8 2 6]

How many times did
you swap two
elements?

A. 3
B. 4
C. 6
D. 8

 [1 4 8 2 6]

// Sorts A using insertion sort
insertionSort(A):
 i = 0;
 while i < A.length:
 j = i;
 while j > 0 and A[j] < A[j-1]:
 swap(A[j], A[j-1])
 j--
 i++

Selection Sort: Exercise
selectionSort(A):
 i = 0;
 while i < A.length:
 // find min of A[i..A.length]
 // swap it with A[i]
 // increment i

Sort the following array
using selection sort:

 [1 4 8 2 6]

A sorted, <= A[i..n]Invariant: ?
i

How many times did
you swap two distinct
elements?

A. 2
B. 3
C. 4
D. 5

 [1 4 8 2 6]

selectionSort(A):
 i = 0;
 while i < A.length:
 // find min of A[i..A.length]
 // swap it with A[i]
 // increment i

Practice Problems
1. Write code for Selection Sort

2. Consider the array:

[8 4 6 10 7 1 2]

Write the state of the array at the conclusion of the loop
iteration in which i == 4 (don’t forget arrays are 0-indexed!).

InsertionSort:

SelectionSort:

Which sort should we use?

Which sort should we use?

•Which one takes less time?  
 

Which sort should we use?

•Which one takes less time?  
 

•Which one takes less memory? 
 

Which sort should we use?

•Which one takes less time?  
 

•Which one takes less memory? 
 

•Other considerations?

How do we measure these
things?

How do we measure these
things?

How do we measure these
things?

•Which one takes less time?  
 

How do we measure these
things?

•Which one takes less time?  
 

•Which one takes less memory? 
 

How do we measure these
things?

•Which one takes less time?  
 

•Which one takes less memory? 
 

•Other considerations?

Measuring Runtime
Question: How could we measure how "fast" an algorithm runs?

public int findMax(int[] a) {
 int currentMax = a[0];
 for (int i = 1; i < a.length; i++) {
 if (currentMax < a[i]) {
 currentMax = a[i];
 }
 }
 return currentMax;
}

How about metrics that are invariant to:

• Length of the array a?

• How fast your computer is?

How should we measure
runtime?

How about metrics that are invariant to:

• Length of the array a?

• How fast your computer is?

Approach: count the number of “operations” the computer
needs to execute.

• Count it in terms of the input size

• “operations” may be faster or slower depending on

the hardware

How should we measure
runtime?

“Primitive” Operations
Things the computer can do in a “fixed” amount of time.

A non-exhaustive list:

• Get or set the value of a variable or array location

• Evaluate a simple expression

• Return from a method

“fixed” - doesn’t depend on the input size (n)

Strategies for counting
primitive operations

Easiest case:

1. Identify all primitive operations

2. Identify how many time each one happens

3. Add them all up.

alg(A, n):
 sum = 0
 for i = 1..n:
 sum += A[i]

Strategies for counting
primitive operations

Easiest case:

1. Identify all primitive operations

2. Identify how many time each one happens

3. Add them all up.

alg(A, n):
 sum = 0
 for i = 1..n:
 sum += A[i]

