CSCI 241: Data Structures

Lecture 2
Tools for talking about algorithms
Intro to sorting
• Lab 1 is out - get started before lab time on Thursday.

• Lots of things to get hung up on - make sure you have time to get help.
Goals

- A slide like this will appear at the start of each lecture.
- This is to be as transparent as possible about what I expect you to get out of the lecture.
- and consequently, what I will expect you to know for assignments, quizzes, and exams.
Goals

• Understand the range index convention a..b

• Know the definition of specification, precondition, postcondition, and invariant.

• Be able to execute insertion sort and selection sort on paper.

• Be able to implement insertion sort and selection sort.
Go to http://socrative.com (or open the Socrative Student app)

Click the blue "Login" button at the top right

Click "Student Login"

Enter "CSCI241"

You should see A, B, C, D, E as selectable options.

Go ahead and try this out now.
Sorting Algorithms

Why?

• Arrays are the simplest and most ubiquitous data structure available to us.

• Sorting algorithms are a fundamental piece of knowledge for computer scientists

• An entry point into the practice of developing, and analyzing algorithms.
Preliminaries: Tools for Talking about Algorithms
Range Indices

\(a \ldots b \) denotes the range of consecutive integers from (and \textit{including}) \(a \) up to (but \textit{excluding}) \(b \).

Examples:

- 0..5 is the range 0, 1, 2, 3, 4
- A[4..6] denotes the 4th and 5th elements of A
- 7..8 is a range containing only 7
- 6..6 is a valid range but contains no elements
Range Indices

\[a..b \] denotes the range of consecutive integers from (and **including**) \(a \) up to (but **excluding**) \(b \).

- What elements are in 2..6?

A. \([3,4,5]\)
B. \([2,3,4,5,6]\)
C. \([3,4,5,6]\)
D. \([2,3,4,5]\)
a..b denotes the range of consecutive integers from (and including) a up to (but excluding) b.

• How many elements are in the range a..b?

A. b−a−1
B. a−b−1
C. b−a+1
D. b−a
Range Indices

\[a..b\] denotes the range of consecutive integers from (and \textbf{including}) \(a\) up to (but \textbf{excluding}) \(b\).

- Recall that \(A\.\text{length}\) gives \(A\)'s length. What range denotes all elements of \(A\)?

 A. \(A[0..A\.\text{length}]\)

 B. \(A[0..A\.\text{length}-1]\)

 C. \(A[0..A\.\text{length}+1]\)

 D. \(A[1..A\.\text{length}-1]\)
/** return the max value in A
 * precondition: A is nonempty
 * postcondition: max value of A is returned */

public int findMax(int[] A) {
 int max = A[0];
 // invariant: max is the max of A[0..i]
 for (int i = 1; i < A.length; i++) {
 if (A[i] > max) {
 max = A[i];
 }
 }
 return max;
}

A method specification is a comment above the method that details the precise behavior of the method.
Precondition, Postcondition

/** return the max value in A
 * precondition: A is nonempty
 * postcondition: max value of A is returned */

public int findMax(int[] A) {
 int max = A[0];
 // invariant: max is the max of A[0..i]
 for (int i = 1; i < A.length; i++) {
 if (A[i] > max) {
 max = A[i];
 }
 }
 return max;
}

caller's responsibility

The **precondition** is true before method execution.
The **postcondition** is true after method execution.
/**
* return the max value in A
* precondition: A is nonempty
* postcondition: max value of A is returned */

public int findMax(int[] A) {
 int max = A[0];
 // invariant: max is the max of A[0..i]
 for (int i = 1; i < A.length; i++) {
 if (A[i] > max) {
 max = A[i];
 }
 }
 return max;
}

A loop invariant is true before, during, and after the loop.
(at the end of each iteration)
The loop invariant is true before, during, and after the loop.
Mystery Algorithm

what does this do?

Inputs:
- an int \(x \),
- an array of ints \(A \)

Precondition:

\[
i = 0
\]

Invariant:

\[
A \quad x \text{ is not here} \quad i
\]

Postcondition:

OR

\[
A \quad x \text{ is not here} \quad i = \text{A.length}
\]

Output:
- final value of \(i \)

Inputs:
- • an int \(x \),
- • an array of ints \(A \)

Output:
- • final value of \(i \)

what does this do?
Mystery Algorithm

what does this do?

it returns the index of the first \(x \) if it is found in the array, or \(A.length \) otherwise

Inputs:
- an int \(x \),
- an array of ints \(A \)

Output:
- final value of \(i \)

Precondition: \(i=0 \)

Invariant: \(x \) is not here

Postcondition: OR

\(i = A.length \)

\(x \) is not here
Interlude: Class Norms

• Let's talk about what **norms** we want to establish for our class. rules, conventions, expectations, etc. that we all agree to follow

• In small groups, spend 4 minutes introducing yourselves and agree on 1-3 norms for this class.

 • Can be anything, but thinking about Zoom etiquette may be useful this quarter.

 • Can relate to your expectations of me as well as of your fellow classmates.

• One member of the group: submit your norms to the open-ended poll on Socrative.