
Lecture 24 - Problems
Write pseudocode for each of the following parts of the process of building a Huffman coding tree.
Feel free to make use of anything you've already implemented in this class (e.g., if you need to sort an
array, you can use a sorting method from A1).

Try to make your pseudocode detailed enough that no design decisions need to be made to turn it
into Java.

1. Count frequencies. Given an input String , Calculate the frequency (i.e., number of
occurrences) of each character in a string.

2. Build the tree. Given the frequencies from part (1), build a Huffman tree. You'll likely need to
define a tree and/or tree node class to represent it.

3. Decode. Given an encoded bitstring (assume it's a String containing only the characters 0 and
1), decode it into the original input string.

4. Build a coding dictionary. To make encoding easier, build a dictionary (represent it using a
hash table) that maps each possible input character with its binary encoding according to a given
Huffman tree.

5. Encode. Given your coding dictionary and an input string, encode the string into its compressed
binary representation (again, for simplicity we'll just represent it with a String containing 0 s
and 1 s, although this is using a full byte for each binary digit and we would want to do better in
a practical implementation).

	 Lecture 24 - Problems

